硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (4): 1137-1147.
所属专题: 水泥混凝土
• 水泥混凝土 • 下一篇
周丽娜1,2, 蔡颖1, 马财龙1, 罗玲1,2
收稿日期:
2022-11-24
修订日期:
2023-01-18
出版日期:
2023-04-15
发布日期:
2023-04-25
通信作者:
马财龙,博士,副教授。E-mail:macailong@xju.edu.cn
作者简介:
周丽娜(1985—),女,博士,讲师。主要从事混凝土材料耐久性损伤监测与评估的研究。E-mail:linazhou@xju.edu.cn
基金资助:
ZHOU Lina1,2, CAI Ying1, MA Cailong1, LUO Ling1,2
Received:
2022-11-24
Revised:
2023-01-18
Online:
2023-04-15
Published:
2023-04-25
摘要: 以氯离子为诱导的钢筋锈蚀是造成混凝土耐久性问题的主要原因,其本质是氯离子通过材料基体的多孔结构在水泥基材料中扩散,并逐步迁移到钢筋表面,发生不利的物理化学反应。水滑石即层状双金属氢氧化物(LDHs)是一种新型延缓钢筋锈蚀的外掺材料,具有独特的层状结构和离子交换性质,可在特定的介质溶液中将客体阴离子与层间阳离子进行交换,达到吸附氯离子、延长混凝土结构服役寿命的目的。本文介绍了水滑石的结构性质、制备方法及氯离子吸附机理,总结了不同类型水滑石的氯离子吸附能力及相关研究成果。研究结果表明:水滑石复合水泥基材料的氯离子吸附性能受LDHs材料制备工艺、水泥基材料中孔隙液pH值及氯离子浓度影响,高温焙烧处理的水滑石对氯离子吸附效果更好;当LDHs掺量控制在1%~3%(质量分数)时,有利于改善水泥基材料的抗氯离子渗透性能。
中图分类号:
周丽娜, 蔡颖, 马财龙, 罗玲. 水滑石复合水泥基材料氯离子吸附能力的研究进展[J]. 硅酸盐通报, 2023, 42(4): 1137-1147.
ZHOU Lina, CAI Ying, MA Cailong, LUO Ling. Research Progress on Adsorption Capacity of Hydrotalcite for Chloride Ions in Cement-Based Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(4): 1137-1147.
[1] 杨长辉, 晏 宇, 欧忠文. 偏高岭土水泥净浆结合氯离子性能的研究[J]. 混凝土, 2010(10): 1-3+7. YANG C H, YAN Y, OU Z W. Capability of cement paste binding chloride ions with metakaolin as admixture[J]. Concrete, 2010(10): 1-3+7 (in Chinese). [2] TANG S W, YAO Y, ANDRADE C, et al. Recent durability studies on concrete structure[J]. Cement and Concrete Research, 2015, 78: 143-154. [3] OTIENO M, BEUSHAUSEN H, ALEXANDER M. Chloride-induced corrosion of steel in cracked concrete-part I: experimental studies under accelerated and natural marine environments[J]. Cement and Concrete Research, 2016, 79: 373-385. [4] XIONG C S, LI W H, JIN Z Q, et al. Preparation of phytic acid conversion coating and corrosion protection performances for steel in chlorinated simulated concrete pore solution[J]. Corrosion Science, 2018, 139: 275-288. [5] JIN Z Q, CHANG H L, DU F Y, et al. Influence of SAP on the chloride penetration and corrosion behavior of steel bar in concrete[J]. Corrosion Science, 2020, 171: 108714. [6] CHEN C, JIANG L H, GUO M Z, et al. Effect of sulfate ions on corrosion of reinforced steel treated by DNA corrosion inhibitor in simulated concrete pore solution[J]. Construction and Building Materials, 2019, 228: 116752. [7] GOMES C, MIR Z M, BASTOS A C, et al. Effect of layered double hydroxides on the performance and service life of reinforced concrete[C]// Conference on Durable Concrete for Infrastructure under Severe Conditions-Smart Admixtures, Self-Responsiveness and Nanoadditions, Ghent, Belgium, September, 2019, 10-11. [8] MIR Z M, BASTOS A, HÖCHE D, et al. Recent advances on the application of layered double hydroxides in concrete-a review[J]. Materials (Basel, Switzerland), 2020, 13(6): 1426. [9] TATEMATSU H, SASAKI T. Repair materials system for chloride-induced corrosion of reinforcing bars[J]. Cement and Concrete Composites, 2003, 25(1): 123-129. [10] RAKI L, BEAUDOIN J J, MITCHELL L. Layered double hydroxide-like materials: nanocomposites for use in concrete[J]. Cement and Concrete Research, 2004, 34(9): 1717-1724. [11] HONG S X, QIN S F, LIU Z M, et al. Enhanced corrosion resistance and applicability of Mg/Al-CO2-3 layered double hydroxide film on Q235 steel substrate[J]. Construction and Building Materials, 2021, 276: 122259. [12] CHEN M Z, WEI Y N, ZHENG H B, et al. Ca-LDH-modified cementitious coating to enhance corrosion resistance of steel bars[J]. Journal of Building Engineering, 2022, 51: 104301. [13] OESTREICHER V, JOBBÁGY M, REGAZZONI A E. Halide exchange on Mg(II)-Al(III) layered double hydroxides: exploring affinities and electrostatic predictive models[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2014, 30(28): 8408-8415. [14] SJÅSTAD A O, ANDERSEN N H, VAJEESTON P, et al. On the thermal stability and structures of layered double hydroxides Mg1-xAlx(OH)2(NO3)x·mH2O (0.18≤x≤0.38)[J]. European Journal of Inorganic Chemistry, 2015, 2015(10): 1775-1788. [15] YANG Z X, FISCHER H, CEREZO J, et al. Aminobenzoate modified MgAl hydrotalcites as a novel smart additive of reinforced concrete for anticorrosion applications[J]. Construction and Building Materials, 2013, 47: 1436-1443. [16] 孙 远. 不同形貌水滑石及其焙烧产物的离子吸附性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. SUN Y. Research on ion adsorption properties of hydrotalcite with different morphologies and its calcined products[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). [17] BALONIS M, GLASSER F P. Calcium nitrite corrosion inhibitor in Portland cement: influence of nitrite on chloride binding and mineralogy[J]. Journal of the American Ceramic Society, 2011, 94(7): 2230-2241. [18] YE H L. Autogenous formation and smart behaviors of nitrite- and nitrate-intercalated layered double hydroxides (LDHs) in Portland cement-metakaolin-dolomite blends[J]. Cement and Concrete Research, 2021, 139: 106267. [19] COSTA D G, ROCHA A B, SOUZA W F, et al. Comparative structural, thermodynamic and electronic analyses of Zn-Al-An- hydrotalcite-like compounds (An-=Cl-, F-, Br-, OH-, CO2-3 or NO-3): an ab initio study[J]. Applied Clay Science, 2012, 56: 16-22. [20] NEVILLE A. Chloride attack of reinforced concrete: an overview[J]. Materials and Structures, 1995, 28(2): 63-70. [21] JUSTNE H. A review of chloride binding in cementitious systems[J]. Nordic Concrete Research, 1998, 21: 48-63. [22] PROVIS J L, BERNAL S A. Geopolymers and related alkali-activated materials[J]. Annual Review of Materials Research, 2014, 44: 299-327. [23] BERNAL S A, SAN NICOLAS R, MYERS R J, et al. MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders[J]. Cement and Concrete Research, 2014, 57: 33-43. [24] 许 闯, 张祖华, 陈慕翀, 等. 层状双金属氢氧化物在水泥混凝土中的形成、作用机制及应用[J]. 材料导报, 2022, 36(11): 99-105. XU C, ZHANG Z H, CHEN M C, et al. Formation, interaction mechanisms and application of layered double hydroxides in cement concrete[J]. Materials Reports, 2022, 36(11): 99-105 (in Chinese). [25] VACCARI A. Layered double hydroxides: present and future[J]. Applied Clay Science, 2002, 22(1/2): 75-76. [26] DUAN X, EVANS D G. Layered double hydroxides: application of layered double hydroxides[J]. Structure and Bonding, 2006, 119: 193-223. [27] 朱 清, 李成胜, 周建成. 镁铝水滑石的共沉淀法制备及表征[J]. 化工时刊, 2017, 31(4): 1-3+17. ZHU Q, LI C S, ZHOU J C. The Co-precipitation preparation and properties of inorganic hydrotalcite[J]. Chemical Industry Times, 2017, 31(4): 1-3+17 (in Chinese). [28] CAO L, GUO J T, TIAN J H, et al. Preparation of Ca/Al-layered double hydroxide and the influence of their structure on early strength of cement[J]. Construction and Building Materials, 2018, 184: 203-214. [29] LIU Z P, MA R Z, OSADA M, et al. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies[J]. Journal of the American Chemical Society, 2006, 128(14): 4872-4880. [30] 张骄佼, 田森林, 周 键. 镁铝水滑石的合成与应用研究进展[J]. 材料导报, 2013, 27(7): 144-148. ZHANG J J, TIAN S L, ZHOU J. Study on synthesis and application of Mg-Al hydrotalcite[J]. Materials Review, 2013, 27(7): 144-148 (in Chinese). [31] 吴 波. 阻锈阴离子插层改性水滑石的制备及其在水泥砂浆中的应用[D]. 深圳: 深圳大学, 2019. WU B. Preparation of inhibitor ions intercalation modified hydrotalcite and its application in cement mortar[D]. Shenzhen: Shenzhen University, 2019 (in Chinese). [32] CHEN M Z, WU F, YU L W, et al. Chloride binding capacity of LDHs with various divalent cations and divalent to trivalent cation ratios in different solutions[J]. CrystEngComm, 2019, 21(44): 6790-6800. [33] 杨成梅, 谢 竺. 水滑石/粉煤灰对注浆早强性能的影响研究[J]. 化学与粘合, 2021, 43(1): 48-51. YANG C M, XIE Z. Research on the effect of hydrotalcite/fly ash on the early strength of cement grouting[J]. Chemistry and Adhesion, 2021, 43(1): 48-51 (in Chinese). [34] VON HOESSLE F, PLANK J, LEROUX F. Intercalation of sulfonated melamine formaldehyde polycondensates into a hydrocalumite LDH structure[J]. Journal of Physics and Chemistry of Solids, 2015, 80: 112-117. [35] YANG Z, FISCHER H, CEREZO J, et al. Modified hydrotalcites for improved corrosion protection of reinforcing steel in concrete-preparation, characterization, and assessment in alkaline chloride solution[J]. Materials and Corrosion, 2016, 67(7): 721-738. [36] 段 平. 层状双氢氧化物改善混凝土耐久性能的机理及其应用研究[D]. 武汉: 武汉理工大学, 2014. DUAN P. Research on modification mechanism and the application of layered double hydroxides for durability of concrete[D]. Wuhan: Wuhan University of Technology, 2014 (in Chinese). [37] SHUI Z H, YU R, CHEN Y X, et al. Improvement of concrete carbonation resistance based on a structure modified layered double hydroxides (LDHs): experiments and mechanism analysis[J]. Construction and Building Materials, 2018, 176: 228-240. [38] HANG T T X, TRUC T A, DUONG N T, et al. Layered double hydroxides as containers of inhibitors in organic coatings for corrosion protection of carbon steel[J]. Progress in Organic Coatings, 2012, 74(2): 343-348. [39] NAKAYAMA H, WADA N, TSUHAKO M. Intercalation of amino acids and peptides into Mg-Al layered double hydroxide by reconstruction method[J]. International Journal of Pharmaceutics, 2004, 269(2): 469-478. [40] ZUO J D, WU B, LUO C Y, et al. Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution[J]. Corrosion Science, 2019, 152: 120-129. [41] XU J X, SONG Y B, ZHAO Y H, et al. Chloride removal and corrosion inhibitions of nitrate, nitrite-intercalated MgAl layered double hydroxides on steel in saturated calcium hydroxide solution[J]. Applied Clay Science, 2018, 163: 129-136. [42] XU J X, TAN Q P, MEI Y J. Corrosion protection of steel by Mg-Al layered double hydroxides in simulated concrete pore solution: effect of SO2-4[J]. Corrosion Science, 2020, 163: 108223. [43] CHEN Y X, SHUI Z H, CHEN W, et al. Chloride binding of synthetic Ca-Al-NO3 LDHs in hardened cement paste[J]. Construction and Building Materials, 2015, 93: 1051-1058. [44] YOON S, MOON J, BAE S, et al. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste[J]. Materials Chemistry and Physics, 2014, 145(3): 376-386. [45] 唐聿明, 牛 乐, 左 禹. 焙烧水滑石对含氯中性化混凝土孔隙液中钢筋腐蚀行为的影响[J]. 电化学, 2010, 16(4): 368-372. TANG Y M, NIU L, ZUO Y. Effect of CLDH on rebar corrosion behavior in chloride contaminated neutral pore solutions[J]. Electrochemistry, 2010, 16(4): 368-372 (in Chinese). [46] 牛 乐. 焙烧水滑石(CLDH)对氯离子存在下钢筋腐蚀行为的影响[D]. 北京: 北京化工大学, 2010. NIU L. Effect of calcined hydrotalcite (CLDH) on the corrosion of rebar by chloride[D]. Beijing: Beijing University of Chemical Technology, 2010 (in Chinese). [47] 胡 静, 吕 亮. 焙烧镁铝碳酸根水滑石对氯离子吸附机理研究[J]. 化学工程与装备, 2008(3): 26-29. HU J, LV L. Study on adsorption mechanism of chloride ion by calcined Mg-Al-carbonate hydrotalcite[J]. Chemical Engineering & Equipment, 2008(3): 26-29 (in Chinese). [48] 张 琳. 镁铝水滑石的制备及其焙烧产物在水泥净浆中固化氯离子性能研究[D]. 衡阳: 南华大学, 2018. ZHANG L. Synthesis of Mg-Al layered double hydroxides and their adsorption capabilityof chloride ion in cement paste[D]. Hengyang: University of South China, 2018 (in Chinese). [49] RAJAMALLU C, CHANDRASEKHAR REDDY T, ARUNAKANTHI E. Service life prediction of self compacted concretes with respect to chloride ion penetration[J]. Materials Today: Proceedings, 2021, 46: 677-681. [50] 王 佩. 焙烧水滑石水泥基复合材料抗盐冻性能研究[D]. 西安: 长安大学, 2020. WANG P. Study on salt freezing resistance of calcined hydrotalcite cement-based composites[D]. Xi’an: Chang’an University, 2020 (in Chinese). [51] 段 平, 严春杰, 陈 伟, 等. 层状双氢氧化物对混凝土抗碳化性能的影响[J]. 硅酸盐学报, 2014, 42(8): 1037-1041. DUAN P, YAN C J, CHEN W, et al. Influence of layered double hydroxides on carbonation resistance of concrete[J]. Journal of the Chinese Ceramic Society, 2014, 42(8): 1037-1041 (in Chinese). [52] MA J T, DUAN P, REN D M, et al. Effects of layered double hydroxides incorporation on carbonation resistance of cementitious materials[J]. Journal of Materials Research and Technology, 2019, 8(1): 292-298. [53] LIU T, CHEN Y X, YU Q L, et al. Effect of MgO, Mg-Al-NO3 LDH and calcined LDH-CO3 on chloride resistance of alkali activated fly ash and slag blends[J]. Construction and Building Materials, 2020, 250: 118865. [54] 冯 跃, 耿 健, 李 东. 焙烧水滑石对砂浆中氯离子渗透的影响[J]. 硅酸盐通报, 2018, 37(4): 1195-1199. FENG Y, GENG J, LI D. Influence of calcined hydrotalcite on chloride penetration in mortar[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(4): 1195-1199 (in Chinese). [55] WANG J, HUANG B, MAO Z Y, et al. Study on adsorption properties of calcined Mg-Al hydrotalcite for sulfate ion and chloride ion in cement paste[J]. Materials (Basel, Switzerland), 2021, 14(4): 994. [56] 宋学锋, 张俊涛, 崔贺龙, 等. 热处理水滑石对普通硅酸盐水泥和碱矿渣水泥抗碳化性能的影响[J]. 硅酸盐通报, 2019, 38(11): 3379-3384. SONG X F, ZHANG J T, CUI H L, et al. Effect of calcined layered double hydroxides on carbonation resistance of ordinary Portland cement and alkali-activated slag cement[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3379-3384 (in Chinese). [57] 李战国, 刘金鹏, 于鹏超, 等. 水滑石类化合物对混凝土物理力学性能影响的探索研究[J]. 建筑技术开发, 2017, 44(17): 95-97. LI Z G, LIU J P, YU P C, et al. Exploratory research of layered double hydroxides on physical and mechanical properties of concrete[J]. Building Technology Development, 2017, 44(17): 95-97 (in Chinese). [58] 马军涛. LDHs-MK复合防御体系改性混凝土及其机理研究[D]. 武汉: 武汉理工大学, 2012. MA J T. Researches on modification and mechanism of LDHs-MK compound defence system in concrete[D]. Wuhan: Wuhan University of Technology, 2012 (in Chinese). [59] HU Y R, LI H H, WANG Q, et al. Characterization of LDHs prepared with different activity MgO and resisting Cl- attack of concrete in salt lake brine[J]. Construction and Building Materials, 2019, 229: 116921. [60] YANG Z X, FISCHER H, POLDER R. Laboratory investigation of the influence of two types of modified hydrotalcites on chloride ingress into cement mortar[J]. Cement and Concrete Composites, 2015, 58: 105-113. [61] MA J T, WANG D G, CHEN H, et al. Chloride absorption behavior of layered double hydroxides in chloride environment[J]. Journal of Testing and Evaluation, 2020, 48(3): 20190062. [62] WANG X H, XU J X, TAN Q P. Effect of nitrite intercalated Mg-Al layered double hydroxides on mortar durability under Cl- and SO2-4 coexisting environment[J]. Journal of Central South University, 2022, 29(2): 546-560. [63] PARKER L M, MILESTONE N B, NEWMAN R H. The use of hydrotalcite as an anion absorbent[J]. Industrial & Engineering Chemistry Research, 1995, 34(4): 1196-1202. [64] TSUJIMURA A, UCHIDA M, OKUWAKI A. Synthesis and sulfate ion-exchange properties of a hydrotalcite-like compound intercalated by chloride ions[J]. Journal of Hazardous Materials, 2007, 143(1/2): 582-586. [65] CAO Y H, DONG S G, ZHENG D J, et al. Multifunctional inhibition based on layered double hydroxides to comprehensively control corrosion of carbon steel in concrete[J]. Corrosion Science, 2017, 126: 166-179. [66] CHEN Z J, YE H L. Sequestration and release of nitrite and nitrate in alkali-activated slag: a route toward smart corrosion control[J]. Cement and Concrete Research, 2021, 143: 106398. [67] YANG L, CHEN M X, LU Z Y, et al. Synthesis of CaFeAl layered double hydroxides 2D nanosheets and the adsorption behaviour of chloride in simulated marine concrete[J]. Cement and Concrete Composites, 2020, 114: 103817. [68] GOMES C, MIR Z, SAMPAIO R, et al. Use of ZnAl-layered double hydroxide (LDH) to extend the service life of reinforced concrete[J]. Materials (Basel, Switzerland), 2020, 13(7): 1769. [69] CAO Y H, ZHENG D J, ZHANG F, et al. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: a review[J]. Journal of Materials Science & Technology, 2022, 102: 232-263. [70] 田玉琬, 文 成, 莫湾湾, 等. Zn-Al-NO2 LDH对海洋工程中碳钢钢筋的腐蚀抑制规律[J]. 广东海洋大学学报, 2020, 40(3): 122-133. TIAN Y W, WEN C, MO W W, et al. Corrosion inhibition effect of Zn-Al-NO2 LDH on carbon steel reinforcement in marine engineering[J]. Journal of Guangdong Ocean University, 2020, 40(3): 122-133 (in Chinese). [71] KE X Y, BERNAL S A, PROVIS J L. Uptake of chloride and carbonate by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkali-activated slag cement[J]. Cement and Concrete Research, 2017, 100: 1-13. [72] KAYALI O, KHAN M S H, SHARFUDDIN AHMED M. The role of hydrotalcite in chloride binding and corrosion protection in concretes with ground granulated blast furnace slag[J]. Cement and Concrete Composites, 2012, 34(8): 936-945. [73] 陈宇轩, 水中和, 陈 伟, 等. LDHs改性偏高岭土基地聚物涂料对混凝土耐久性的影响研究[J]. 硅酸盐通报, 2015, 34(7): 1968-1973. CHEN Y X, SHUI Z H, CHEN W, et al. Effect of LDHs modified MK-based geopolymer coating on durability of concrete[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(7): 1968-1973 (in Chinese). [74] 陈国玮, 水中和, 段 平, 等. 插层材料-偏高岭土复合改性混凝土抗硫酸盐侵蚀[J]. 武汉理工大学学报, 2014, 36(8): 1-5. CHEN G W, SHUI Z H, DUAN P, et al. Combination of LDHs and metakaolin for improving the sulfate ion resistance of concrete[J]. Journal of Wuhan University of Technology, 2014, 36(8): 1-5 (in Chinese). |
[1] | 梁锐, 孔森, 张琰, 刘佳龙. 梳状纳米二氧化硅分散液的制备及对水泥基材料性能的提升[J]. 硅酸盐通报, 2023, 42(4): 1183-1193. |
[2] | 余海燕, 徐晴, 王英翔, 董德宇. 不同环境下碳铝酸钙的稳定性研究[J]. 硅酸盐通报, 2023, 42(3): 845-853. |
[3] | 徐宁, 杨恒, 熊传胜, 张栋, 蒋鹏, 刘璨, 刘欣昕, 程星燎. 钢筋混凝土中防腐添加剂的研究进展[J]. 硅酸盐通报, 2023, 42(1): 1-21. |
[4] | 徐鑫, 张鸿儒, 季韬, 赵宝军, 姚杰. 再生细骨料含水状态对砂浆性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3036-3046. |
[5] | 单继雄, 李军, 侯永生, 胡艳民, 刘畅. 钙铝类水滑石对混凝土抗盐冻性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3084-3090. |
[6] | 张啸, 王璜琪, 王栋民. 黄金尾矿制备水泥和混凝土的研究进展[J]. 硅酸盐通报, 2022, 41(9): 3121-2128. |
[7] | 耿圆洁, 孙丛涛, 孙明, 张余果, 段继周. 水泥基材料氯离子结合机理及影响因素研究综述[J]. 硅酸盐通报, 2022, 41(8): 2604-2617. |
[8] | 张璐, 毛倩瑾, 伍文文, 李润丰, 韩磊, 王子明, 崔素萍. 吸水性微胶囊界面修饰提高水泥基材料抗渗性研究[J]. 硅酸盐通报, 2022, 41(8): 2663-2671. |
[9] | 高源, 金祖权, 李宁. 利用丝束电极技术研究氧浓度对海水海砂砂浆中钢筋锈蚀的影响[J]. 硅酸盐通报, 2022, 41(8): 2672-2683. |
[10] | 庄彬彬, 萧超雄, 刘强, 邓嘉辉, 汪大洋. 不同掺合料混凝土与锈蚀钢筋间粘结-滑移力学性能试验研究[J]. 硅酸盐通报, 2022, 41(8): 2767-2773. |
[11] | 祁帅, 田青, 张苗, 屈孟娇, 姚田帅, 王成. 水泥基材料成核剂研究进展[J]. 硅酸盐通报, 2022, 41(7): 2223-2234. |
[12] | 赵雅明, 张明飞, 张振, 罗要飞. 混杂纤维增强高强混凝土性能研究[J]. 硅酸盐通报, 2022, 41(7): 2299-2307. |
[13] | 田昊东, 徐驰, 许少坤, 周绍骏, 曹文龙, 祖成奎. 玻璃化学强化技术研究进展[J]. 硅酸盐通报, 2022, 41(7): 2502-2510. |
[14] | 陈伟, 李玥, 刘翔, 唐焱杰, 唐佩. DAP超分子水凝胶驱动自修复水泥基材料[J]. 硅酸盐通报, 2022, 41(5): 1502-1509. |
[15] | 何晓雁, 张天晓, 王辰昊, 武皓杰. 纤维水泥基材料抗冻性与孔结构关系的变化规律[J]. 硅酸盐通报, 2022, 41(5): 1529-1538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||