[1] CHEN Y, WANG N N, OLA O, et al. Porous ceramics: light in weight but heavy in energy and environment technologies[J]. Materials Science and Engineering: R: Reports, 2021, 143: 100589. [2] 彭团儿, 李洪潮, 刘玉林, 等. 工业固废制备发泡陶瓷研究及应用进展[J]. 陶瓷, 2019(12): 9-22. PENG T E, LI H C, LIU Y L, et al. Applications and research of foam ceramic prepared by using industry solid waste[J]. Ceramics, 2019(12): 9-22 (in Chinese). [3] 姜葱葱, 董祎然, 黄世峰, 等. 基于原位发泡工艺的固废基发泡陶瓷研究进展[J]. 硅酸盐学报, 2022, 50(9): 2510-2526. JIANG C C, DONG Y R, HUANG S F, et al. Research progress on solid waste-based foamed ceramics based on in situ foaming process[J]. Journal of the Chinese Ceramic Society, 2022, 50(9): 2510-2526 (in Chinese). [4] 周 楠, 姚依南, 宋卫剑, 等. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报, 2020, 37(1): 136-146. ZHOU N, YAO Y N, SONG W J, et al. Present situation and prospect of coal gangue treatment technology[J]. Journal of Mining & Safety Engineering, 2020, 37(1): 136-146 (in Chinese). [5] QIN B J, LIN M, XU Z M, et al. Preparing ultra-thin glass from waste glass containing impurities of household waste by the combined technology of in situ deposition and vacuum pyrolysis[J]. Resources, Conservation and Recycling, 2022, 185: 106451. [6] LIAN W, LIU Y, WANG W J, et al. Preparation of environmentally friendly low-cost mullite porous ceramics and the effect of waste glass powder on structure and mechanical properties[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, 9(2): 577-585. [7] JIANG C C, HUANG S F, ZHANG X Z, et al. Tailoring pore structure and properties of waste-derived ceramic foams for lightweight construction[J]. RSC Advances, 2019, 9(62): 36308-36315. [8] 解传娣, 张 雷. 利用煤矸石和废玻璃制备发泡陶瓷材料及其性能的研究[J]. 中国陶瓷, 2022, 58(5): 51-56+64. XIE C D, ZHANG L. Study on preparation and properties of foamed ceramics materials using coal gangue and waste glass[J]. China Ceramics, 2022, 58(5): 51-56+64 (in Chinese). [9] MI H H, YANG J L, SU Z G, et al. Preparation of ultra-light ceramic foams from waste glass and fly ash[J]. Advances in Applied Ceramics, 2017, 116(7): 400-408. [10] ZHANG C S, WANG X, ZHU H J, et al. Preparation and properties of foam ceramic from nickel slag and waste glass powder[J]. Ceramics International, 2020, 46(15): 23623-23628. [11] 胡明玉, 樊财进, 叶晓春, 等. 工艺参数对煤矿废弃物泡沫隔热陶瓷孔结构和力学性能的影响[J]. 硅酸盐通报, 2019, 38(3): 627-633. HU M Y, FAN C J, YE X C, et al. Effect of process parameters on pore structure and mechanical properties of foam insulation ceramics with coal mine waste[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 627-633 (in Chinese). [12] BEN BECHIR M. The sodium-ion battery: study of alternative current conduction mechanisms on the Na3PO4-based solid electrolyte[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 120: 114032. [13] WANG H, CHEN Z W, LIU L L, et al. Synthesis of a foam ceramic based on ceramic tile polishing waste using SiC as foaming agent[J]. Ceramics International, 2018, 44(9): 10078-10086. [14] ZENG L. Preparation of porous glass-ceramics from coal fly ash and asbestos tailings by high-temperature pore-forming[J]. Waste Management, 2020, 106: 184-192. [15] GE X X, SUN H J, PENG T J, et al. Effects of flux components on the properties and pore structure of ceramic foams produced from coal bottom ash[J]. Ceramics International, 2019, 45(9): 12528-12534. [16] JI R, ZHOU M K, WANG H D, et al. Synthesis, characterization and modeling of new building insulation material using ceramic polishing waste residue[J]. Construction and Building Materials, 2015, 85: 119-126. [17] 赵绘婷, 刘 振, 董龙浩, 等. 利用硅酸盐质废料制备发泡陶瓷的研究[J]. 中国陶瓷工业, 2022, 29(1): 1-6. ZHAO H T, LIU Z, DONG L H, et al. Study on preparation of foamed ceramics from silicate waste[J]. China Ceramic Industry, 2022, 29(1): 1-6 (in Chinese). [18] TAGHIZADEH M T, YEGANEH N, REZAEI M. The investigation of thermal decomposition pathway and products of poly (vinyl alcohol) by TG-FTIR[J]. Journal of Applied Polymer Science, 2015, 132(25): 42117. [19] HUANG G D, JI Y S, LI J, et al. Improving strength of calcinated coal gangue geopolymer mortars via increasing calcium content[J]. Construction and Building Materials, 2018, 166: 760-768. [20] KIM J W, LEE Y D, LEE H G. Decomposition of Na2CO3 by interaction with SiO2 in mold flux of steel continuous casting[J]. ISIJ International, 2001, 41(2): 116-123. [21] GUO Y X, YAN K Z, CUI L, et al. Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction[J]. International Journal of Mineral Processing, 2014, 131: 51-57. [22] CHEN X, ZHU G R, ZHOU M K, et al. Effect of organic polymers on the properties of slag-based geopolymers[J]. Construction and Building Materials, 2018, 167: 216-224. [23] 李 宇, 王耀忠, 王亚昆. 烧结气氛对钢渣陶瓷晶相和性能的影响[J]. 工程科学学报, 2018, 40(3): 340-348. LI Y, WANG Y Z, WANG Y K. Influence of sintering atmosphere on crystals and performance of slag ceramics[J]. Chinese Journal of Engineering, 2018, 40(3): 340-348 (in Chinese). [24] BHOGI S. Foam stabilization by magnesium[J]. Materials Letters, 2017, 200: 118-120. [25] IP S W, WANG Y, TOGURI J M. Aluminum foam stabilization by solid particles[J]. Canadian Metallurgical Quarterly, 1999, 38(1): 81-92. [26] DING L F. Preparation and characterization of glass-ceramic foams from blast furnace slag and waste glass[J]. Materials Letters, 2015, 141: 327-329. |