[1] AHO I M, UUNGWA S J. Engineering properties of scoria concrete as a construction material[J]. Global Journal of Engineering Research, 2015, 14(1): 59. [2] HOSSAIN K M A. Blended cement and lightweight concrete using scoria: mix design, strength, durability and heat insulation characteristics[J]. International Journal of Physical Sciences, 2006, 1(1): 5-16. [3] 黎蔚诗, 王 旭, 夏京亮, 等. 天然火山渣轻骨料混凝土骨料体系对混凝土性能的影响研究[J]. 建筑科学, 2018, 34(3): 76-81. LI W S, WANG X, XIA J L, et al. Study on the impact of the aggregate system on natural volcanic lightweight aggregate concrete performance[J]. Building Science, 2018, 34(3): 76-81 (in Chinese). [4] XIAO J Z, QIANG C B, NANNI A, et al. Use of sea-sand and seawater in concrete construction: current status and future opportunities[J]. Construction and Building Materials, 2017, 155: 1101-1111. [5] ETXEBERRIA M, FERNANDEZ J M, LIMEIRA J. Secondary aggregates and seawater employment for sustainable concrete dyke blocks production: case study[J]. Construction and Building Materials, 2016, 113: 586-595. [6] GUO M H, HU B, XING F, et al. Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis[J]. Construction and Building Materials, 2020, 234: 117339. [7] 耿健智, 朱德举, 郭帅成, 等. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 152-159. GENG J Z, ZHU D J, GUO S C, et al. Experimental study on mechanical properties of seawater sea-sand concrete with sea-sands from different regions[J]. Materials Reports, 2022, 36(3): 152-159 (in Chinese). [8] 国家质量监督检验检疫总局. 建筑用卵石、碎石: GB/T 14685—2011[S]. 北京: 中国标准出版社, 2004. China National Standardization Administration. Pebble and gravel for construction: GB/T 14685—2011[S]. Beijing: China Standards Press, 2011 (in Chinese). [9] 国家质量监督检验检疫总局. 建筑用砂: GB/T 14684—2001[S]. 北京: 中国标准出版社, 2004. General Administration of Quality Supervision, Inspection and Quarantine. Building sand: GB/T 14684—2001[S]. Beijing: China Standard Press, 2004 (in Chinese). [10] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55—2011[S]. Beijing: China Construction Industry Press, 2011 (in Chinese). [11] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T 12—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T 12—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese). [12] RILEM D R. Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams[J]. Materials and Structures, 1985, 18(4): 287-290. [13] 韩宇栋, 王振波, 刘伟康, 等. 不同强度海水珊瑚骨料混凝土断裂性能对比研究[J]. 建筑材料学报, 2021, 24(4): 881-886. HAN Y D, WANG Z B, LIU W K, et al. Comparative study on fracture properties of seawater coral aggregate concrete with different strengths[J]. Journal of Building Materials, 2021, 24(4): 881-886 (in Chinese). [14] 徐世烺, 余秀丽, 李庆华. 电测法确定低强混凝土裂缝起裂和等效裂缝长度[J]. 工程力学, 2015, 32(12): 84-89. XU S L, YU X L, LI Q H. Determination of crack initiation and equivalent crack length of low strength concrete using strain gauges[J]. Engineering Mechanics, 2015, 32(12): 84-89 (in Chinese). [15] 肖建庄, 张 鹏, 张青天, 等. 海水海砂再生混凝土的基本力学性能[J]. 建筑科学与工程学报, 2018, 35(2): 16-22. XIAO J Z, ZHANG P, ZHANG Q T, et al. Basic mechanical properties of seawater sea-sand recycled concrete[J]. Journal of Architecture and Civil Engineering, 2018, 35(2): 16-22 (in Chinese). [16] 马芹永, 白 梅. 珍珠岩基相变骨料混凝土断裂特性试验与分析[J]. 建筑材料学报, 2018, 21(3): 365-369. MA Q Y, BAI M. Experiment and analysis on fracture properties of perlite-based phase-changing aggregates concrete[J]. Journal of Building Materials, 2018, 21(3): 365-369 (in Chinese). [17] 中华人民共和国国家发展和改革委员会. 水工混凝土断裂试验规程: DL/T 5332—2005[S]. 北京: 中国电力出版社, 2006. National Development and Reform Commission of the People's Republic of China. Rules for fracture test of hydraulic concrete : DL/T 5332—2005[S]. Beijing : China Electric Power Press, 2006(in Chinese). [18] XU S L, REINHARDT H W, WU Z M, et al. Comparison between the double-K fracture model[J]. Otto Graf Journal, 2003, 24: 131- 157. [19] 臧朝会, 杨树桐, 金亮亮. 海水海砂混凝土双K断裂参数的确定[J]. 海洋工程, 2019, 37(4): 142-150. ZANG C H, YANG S T, JIN L L. Determination of double K fracture parameters of seawater sea sand concrete[J]. The Ocean Engineering, 2019, 37(4): 142-150 (in Chinese). [20] 徐世烺, 吴智敏, 丁生根. 砼双K断裂参数的实用解析方法[J]. 工程力学, 2003, 20(3): 54-61. XU S L, WU Z M, DING S G. A practical analytical approach to the determination of double-K fracture parameters of concrete[J]. Engineering Mechanics, 2003, 20(3): 54-61 (in Chinese). [21] 吴智敏, 徐世烺, 王金来, 等. 三点弯曲梁法研究砼双K断裂参数及其尺寸效应[J]. 水力发电学报, 2000, 19(4): 16-24. WU Z M, XU S L, WANG J L, et al. Double-K fracture parameter of concrete and its size effect by using three point bending beam method[J]. Journal of Hydroelectric Engineering, 2000, 19(4): 16-24 (in Chinese). [22] 吴智敏, 徐世烺, 丁一宁, 等. 砼非标准三点弯曲梁试件双K断裂参数[J]. 中国工程科学, 2001, 3(4): 76-81. WU Z M, XU S L, DING Y N, et al. The double-K fracture parameter of concrete for non-standard three point bending beam specimens[J]. Engineering Science, 2001, 3(4): 76-81 (in Chinese). [23] 杨尚谕, 周 梅, 张玉琢, 等. 自燃煤矸石粗集料取代率对混凝土断裂韧性的影响[J]. 建筑材料学报, 2020, 23(4): 858-864. YANG S Y, ZHOU M, ZHANG Y Z, et al. Effect of spontaneous combustion coal gangue coarse aggregate replacement ratio on fracture properties of three-point bending concrete beam[J]. Journal of Building Materials, 2020, 23(4): 858-864 (in Chinese). [24] 罗素蓉, 林 倩, 李炜源, 等. 纳米材料改性再生骨料混凝土断裂性能[J]. 建筑材料学报, 2022, 25(11): 1151-1159. LUO S R, LIN Q, LI W Y, et al. Fracture performance of recycled aggregate concrete modified by nanomaterials[J]. Journal of Building Materials, 2022, 25(11): 1151-1159 (in Chinese). [25] LI V C, CHAN C M, LEUNG C K Y. Experimental determination of the tension-softening relations for cementitious composites[J]. Cement and Concrete Research, 1987, 17(3): 441-452. [26] REINHARDT H W, CORNELISSEN H A W, HORDIJK D A. Tensile tests and failure analysis of concrete[J]. Journal of Structural Engineering, 1986, 112(11): 2462-2477. |