硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (3): 925-938.
所属专题: 资源综合利用
宁旭文1,2, 杨浪1,2, 饶峰1,2, 孙传琳1,2, 方屹1,2, 张凯铭1,2
收稿日期:
2022-11-08
修订日期:
2022-12-19
出版日期:
2023-03-15
发布日期:
2023-03-31
通信作者:
杨 浪,博士,副教授。E-mail:siryanglang@fzu.edu.cn
作者简介:
宁旭文(1999—),男,硕士研究生。主要从事固废资源综合利用的研究。E-mail:1085769244@qq.com
基金资助:
NING Xuwen1,2, YANG Lang1,2, RAO Feng1,2, SUN Chuanlin1,2, FANG Yi1,2, ZHANG Kaiming1,2
Received:
2022-11-08
Revised:
2022-12-19
Online:
2023-03-15
Published:
2023-03-31
摘要: 铁尾矿是我国大宗工业固废的主要组成部分,库存量大,若不加以处理,将会造成环境污染风险和二次资源浪费,如何高效资源化利用铁尾矿是安全消纳大宗工业固废的重要保障。本文基于铁尾矿的基本性质和利用途径,以及电磁吸波原理,主要介绍了铁尾矿及其改性电磁吸波材料研究,以及铁尾矿在水泥基吸波混凝土和地质聚合物吸波胶凝材料中的研究,着重阐述了铁尾矿在水泥基混凝土中的吸波性能和机理研究进展,探讨了通过地质聚合反应制备铁尾矿基地质聚合物吸波混凝土的可行性及其性能,可为铁尾矿基地质聚合物在多功能建筑材料方面的应用提供借鉴,为提高铁尾矿固废资源的综合利用率,解决尾矿堆积、环境污染等问题提供解决思路。本文旨在总结铁尾矿在吸波建筑材料的研究进展并进一步推动地质聚合物吸波建筑材料的发展。
中图分类号:
宁旭文, 杨浪, 饶峰, 孙传琳, 方屹, 张凯铭. 铁尾矿在电磁吸波建筑材料中的研究进展[J]. 硅酸盐通报, 2023, 42(3): 925-938.
NING Xuwen, YANG Lang, RAO Feng, SUN Chuanlin, FANG Yi, ZHANG Kaiming. Research Progress of Iron Tailings in Electromagnetic Wave Absorbing Building Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(3): 925-938.
[1] 潘德安, 逯海洋, 刘晓敏, 等. 铁尾矿建材化利用的研究进展与展望[J]. 硅酸盐通报, 2019, 38(10): 3162-3169+3214. PAN D A, LU H Y, LIU X M, et al. Research progress and prospect on utilization of iron tailings for building materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(10): 3162-3169+3214 (in Chinese). [2] 王海军, 王伊杰, 李文超, 等. 《全国矿产资源节约与综合利用报告(2019)》[J]. 中国国土资源经济, 2020, 33(2): 2. WANG H J, WANG Y J, LI W C, et al. The report of mineral resources saving & comprehensive utilization in China(2019)[J]. Natural Resource Economics of China, 2020, 33(2): 2 (in Chinese). [3] 张杰西, 赵 斌, 房 彬. 我国铁尾矿排放现状及综合利用研究[J]. 再生资源与循环经济, 2015, 8(9): 29-32+44. ZHANG J X, ZHAO B, FANG B. Research on current situation and comprehensive utilization of iron ore tailings emissions in China[J]. Recyclable Resources and Circular Economy, 2015, 8(9): 29-32+44 (in Chinese). [4] RAO F, LIU Q. Geopolymerization and its potential application in mine tailings consolidation: a review[J]. Mineral Processing and Extractive Metallurgy Review, 2015, 36(6): 399-409. [5] ANDREW ROBBIE M. Global CO2 emissions from cement production, 1928—2017[J]. Earth System Science Data, 2018, 10(4): 2213-2239. [6] 曹茂庆. 绿色建筑与电磁屏蔽材料[J]. 表面技术, 2020, 49(2): 1-11. CAO M Q. Green architecture and electromagnetic shielding materials[J]. Surface Technology, 2020, 49(2): 1-11 (in Chinese). [7] 顾晓薇, 艾莹莹, 赵昀奇, 等. 铁尾矿资源化利用现状[J/OL]. 中国有色金属学报,2022: 1-29 (2022-01-13). https://kns.cnki.net/kcms/detail/43.1238.TG.20220112.1844.002.html. GU X W, AI Y Y, ZHAO J Q, et al. Status quo of resource utilization of iron ore tailings[J/OL]. The Chinese Journal of Nonferrous Metals, 2022: 1-29 (2022-01-13). https://kns.cnki.net/kcms/detail/43.1238.TG.20220112.1844.002.html (in Chinese). [8] ZHAO S J, FAN J J, SUN W. Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete[J]. Construction and Building Materials, 2014, 50: 540-548. [9] LV X D, SHEN W G, WANG L, et al. A comparative study on the practical utilization of iron tailings as a complete replacement of normal aggregates in dam concrete with different gradation[J]. Journal of Cleaner Production, 2019, 211: 704-715. [10] DO CARMO E SILVA DEFÁVERI K, DOS SANTOS L F, DE CARVALHO J M F, et al. Iron ore tailing-based geopolymer containing glass wool residue: a study of mechanical and microstructural properties[J]. Construction and Building Materials, 2019, 220: 375-385. [11] DUAN P, YAN C J, ZHOU W, et al. Fresh properties, compressive strength and microstructure of fly ash geopolymer paste blended with iron ore tailing under thermal cycle[J]. Construction and Building Materials, 2016, 118: 76-88. [12] KURANCHIE F A, SHUKLA S K, HABIBI D. Utilisation of iron ore mine tailings for the production of geopolymer bricks[J]. International Journal of Mining, Reclamation and Environment, 2016, 30(2): 92-114. [13] 张 毅, 仝克闻, 全 源, 等. 铁尾矿膏体充填浓缩试验研究[J]. 矿冶工程, 2016, 36(2): 54-56+59. ZHANG Y, TONG K W, QUAN Y, et al. Experimental study on paste thickening of iron tailings for backfilling[J]. Mining and Metallurgical Engineering, 2016, 36(2): 54-56+59 (in Chinese). [14] HAN X Y, WANG Y P, ZHANG N, et al. Facile synthesis of mesoporous silica derived from iron ore tailings for efficient adsorption of methylene blue[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617: 126391. [15] LU C, ZHANG S L, WANG J, et al. Efficient activation of peroxymonosulfate by iron-containing mesoporous silica catalysts derived from iron tailings for degradation of organic pollutants[J]. Chemical Engineering Journal, 2022, 446: 137044. [16] 孙强强, 杨文凯, 李 兆, 等. 利用铁尾矿制备微晶泡沫玻璃的热处理工艺研究[J]. 矿产保护与利用, 2020, 40(3): 69-74. SUN Q Q, YANG W K, LI Z, et al. Research on heat treatment process of foam glass-ceramics from iron tailings[J]. Conservation and Utilization of Mineral Resources, 2020, 40(3): 69-74 (in Chinese). [17] CHEN Y L, DU J Y, HOU H B, et al. Preparation and characterization of the lightweight fired brick with low-silicon iron tailings[J]. IOP Conference Series: Materials Science and Engineering, 2018, 423: 012103. [18] LI W S, LEI G Y, XU Y, et al. The properties and formation mechanisms of eco-friendly brick building materials fabricated from low-silicon iron ore tailings[J]. Journal of Cleaner Production, 2018, 204: 685-692. [19] 刘俊杰, 梁 钰, 曾 宇, 等. 利用铁尾矿制备免烧砖的研究[J]. 矿产综合利用, 2020(5): 136-141. LIU J J, LIANG Y, ZENG Y, et al. Preparation of baking-free bricks by iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 136-141 (in Chinese). [20] LIU K N, WANG S L, QUAN X Y, et al. Effect of iron ore tailings industrial by-product as eco-friendly aggregate on mechanical properties, pore structure, and sulfate attack and dry-wet cycles resistance of concrete[J]. Case Studies in Construction Materials, 2022, 17: e01472. [21] SHETTIMA A U, HUSSIN M W, AHMAD Y, et al. Evaluation of iron ore tailings as replacement for fine aggregate in concrete[J]. Construction and Building Materials, 2016, 120: 72-79. [22] CHEN F, ZHANG L J, ZOU C Y, et al. Study on influencing factors of shear characteristics of rock-fill concrete layer of iron tailings as fine aggregate[J]. Construction and Building Materials, 2022, 345: 128213. [23] 顾晓薇, 殷士奇, 张伟峰, 等. 铁尾矿砂多元化替代方式对混凝土抗压强度影响研究[J]. 矿业研究与开发, 2021, 41(12): 104-108. GU X W, YIN S Q, ZHANG W F, et al. Study on influence of diversified alternative method of iron tailings sand on compressive strength of concrete[J]. Mining Research and Development, 2021, 41(12): 104-108 (in Chinese). [24] ZHU Q, YUAN Y X, CHEN J H, et al. Research on the high-temperature resistance of recycled aggregate concrete with iron tailing sand[J]. Construction and Building Materials, 2022, 327: 126889. [25] CAO L P, ZHOU J, ZHOU T, et al. Utilization of iron tailings as aggregates in paving asphalt mixture: a sustainable and eco-friendly solution for mining waste[J]. Journal of Cleaner Production, 2022, 375: 134126. [26] LI X G, WANG P Q, QIN J Y, et al. Mechanical properties of sintered ceramsite from iron ore tailings affected by two-region structure[J]. Construction and Building Materials, 2020, 240: 117919. [27] 刘 曙, 李育彪, 黄 雯, 等. 低硅铁尾矿制备陶粒滤料试验研究[J]. 金属矿山, 2022(8): 262-268. LIU S, LI Y B, HUANG W, et al. Study on the preparation of ceramisite filter from low-silicate iron tailings[J]. Metal Mine, 2022(8): 262-268 (in Chinese). [28] LI X G, WANG P Q, GUO Z Z, et al. Effect of Fe2+/Fe3+ on high-strength ceramsite prepared by sintering geopolymers using iron ore tailings[J]. Ceramics International, 2022, 48(4): 5681-5688. [29] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35(2): 429-441. [30] 黎 洁, 谢 贤, 李博琦, 等. 地质聚合物研究进展[J]. 矿产保护与利用, 2020, 40(6): 141-148. LI J, XIE X, LI B Q, et al. Overview of research on geopolymers[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 141-148 (in Chinese). [31] ZHAO J H, TONG L Y, LI B E, et al. Eco-friendly geopolymer materials: a review of performance improvement, potential application and sustainability assessment[J]. Journal of Cleaner Production, 2021, 307: 127085. [32] 冯向鹏, 张 娜, 孙恒虎, 等. 用赤泥提高铁尾矿热活化性能的试验研究[J]. 金属矿山, 2007(10): 132-136. FENG X P, ZHANG N, SUN H H, et al. Study on heat-activation property of iron tailing by red mud[J]. Metal Mine, 2007(10): 132-136 (in Chinese). [33] 张延年, 孙厚启, 顾晓薇, 等. 铁尾矿基多固废矿物掺和料耦合活化机理分析[J]. 非金属矿, 2022, 45(3): 82-85. ZHANG Y N, SUN H Q, GU X W, et al. Coupling activation mechanism analysis of iron tailings based solid waste mineral admixture[J]. Non-Metallic Mines, 2022, 45(3): 82-85 (in Chinese). [34] 梁志鹏, 孙 畅, 毕万利, 等. 高硅型铁尾矿机械活化效果及机理研究[J]. 硅酸盐通报, 2022, 41(8): 2810-2818. LIANG Z P, SUN C, BI W L, et al. Mechanical activation of high silicon iron tailings and its mechanism[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2810-2818 (in Chinese). [35] YANG Y C, YANG Z L, CHENG Z X, et al. Effects of wet grinding combined with chemical activation on the activity of iron tailings powder[J]. Case Studies in Construction Materials, 2022, 17: e01385. [36] 李 晓, 夏 禹, 王 珏. 多维激发对富硅铁尾矿活化的耦合效应研究[J]. 新型建筑材料, 2022, 49(6): 1-5. LI X, XIA Y, WANG J. Study on the coupling effect of multi-dimensional excitation on the activation of silicon-rich iron tailings[J]. New Building Materials, 2022, 49(6): 1-5 (in Chinese). [37] FERREIRA I C, GALÉRY R, HENRIQUES A B, et al. Reuse of iron ore tailings for production of metakaolin-based geopolymers[J]. Journal of Materials Research and Technology, 2022, 18: 4194-4200. [38] 王梦婵. 低硅铁尾矿地聚物的制备及性能研究[D]. 武汉: 武汉科技大学, 2019. WANG M C. Preparation and properties of low-silicon iron tailings geopolymer[D]. Wuhan: Wuhan University of Science and Technology, 2019 (in Chinese). [39] OBENAUS-EMLER R, FALAH M, ILLIKAINEN M. Assessment of mine tailings as precursors for alkali-activated materials for on-site applications[J]. Construction and Building Materials, 2020, 246: 118470. [40] WANG D H, SHI C J, FARZADNIA N, et al. A review on use of limestone powder in cement-based materials: mechanism, hydration and microstructures[J]. Construction and Building Materials, 2018, 181: 659-672. [41] QIU J P, XIANG J C, ZHANG W Q, et al. Effect of microbial-cemented on mechanical properties of iron tailings backfill and its mechanism analysis[J]. Construction and Building Materials, 2022, 318: 126001. [42] 李恒天. 铁尾矿基充填材料研发及性能研究[D]. 济南: 山东大学, 2020. LI H T. Research and development of iron tailing based filling material and its properties[D]. Jinan: Shandong University, 2020 (in Chinese). [43] 姜 薇, 雷国元, 李铁一, 等. 细粒铁尾矿胶结充填体性能试验研究[J]. 矿业研究与开发, 2014, 34(5): 26-30. JIANG W, LEI G Y, LI T Y, et al. Experimental study on cemented filling performance of fine iron tailings[J]. Mining Research and Development, 2014, 34(5): 26-30 (in Chinese). [44] LU C, YANG H M, WANG J, et al. Utilization of iron tailings to prepare high-surface area mesoporous silica materials[J]. Science of the Total Environment, 2020, 736: 139483. [45] 南 宁, 崔孝炜, 孙强强, 等. 铁尾矿制备微晶玻璃的研究[J]. 矿产综合利用, 2022(3): 47-50. NAN N, CUI X W, SUN Q Q, et al. Investigation on preparation of glass-ceramics with iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2022(3): 47-50 (in Chinese). [46] XU C L, FENG Y L, LI H R, et al. Adsorption of heavy metal ions by iron tailings: behavior, mechanism, evaluation and new perspectives[J]. Journal of Cleaner Production, 2022, 344: 131065. [47] DE FREITAS V A A, BREDER S M, SILVAS F P C, et al. Use of iron ore tailing from tailing dam as catalyst in a Fenton-like process for methylene blue oxidation in continuous flow mode[J]. Chemosphere, 2019, 219: 328-334. [48] GONG L L, HUA X, YAO B X, et al. Novel red composite pigment with high thermostability from iron ore tailings: synthesis and coloring mechanism[J]. Ceramics International, 2023, 49(3): 5066-5076. [49] YAO R, LIAO S Y, DAI C L, et al. Preparation and characterization of novel glass-ceramic tile with microwave absorption properties from iron ore tailings[J]. Journal of Magnetism and Magnetic Materials, 2015, 378: 367-375. [50] YAO R, LIAO S Y, CHEN X Y, et al. Effects of ZnO and NiO on material properties of microwave absorptive glass-ceramic tile derived from iron ore tailings[J]. Ceramics International, 2016, 42(7): 8179-8189. [51] LIU T T, CAO M Q, FANG Y S, et al. Green building materials lit up by electromagnetic absorption function: a review[J]. Journal of Materials Science & Technology, 2022, 112: 329-344. [52] DUAN Y P, GUAN H T. Microwave absorbing materials[M]. Singapore: Pan Stanford Publishing, 2016: 10-14. [53] SOLKIN M. Electromagnetic interference hazards in flight and the 5G mobile phone: review of critical issues in aviation security[J]. Transportation Research Procedia, 2021, 59: 310-318. [54] BATOOL S, BIBI A, FREZZA F, et al. Benefits and hazards of electromagnetic waves, telecommunication, physical and biomedical: a review[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(7): 3121-3128. [55] XIE S, JI Z J, YANG Y, et al. Electromagnetic wave absorption enhancement of carbon black/gypsum based composites filled with expanded perlite[J]. Composites Part B: Engineering, 2016, 106: 10-19. [56] ZENG X J, CHENG X Y, YU R H, et al. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers[J]. Carbon, 2020, 168: 606-623. [57] 娄明连, 阚 涛, 陆兴远. 用铁砂(磁铁矿)尾矿制备的复合电波吸收材料特性[J]. 磁性材料及器件, 2000, 31(3): 22-25. LOU M L, KAN T, LU X Y. Research on the properties of compound EM wave absorption materials made by iron-sand (magnetic ore) tailings[J]. Journal of Magnetic Materials and Deuices, 2000, 31(3): 22-25 (in Chinese). [58] 娄天玲, 娄明连, 陆兴远. 用铁砂(磁铁矿)尾矿研制的复合电波吸收材料特性研究[J]. 安徽大学学报(自然科学版), 2000, 24(4): 60-63. LOU T L, LOU M L, LU X Y. Research on the properties of composite EM wave absorption materials made by iron-sand (magnetite) tailings[J]. Journal of Anhui University (Natural Sciences), 2000, 24(4): 60-63 (in Chinese). [59] 云月厚, 邰显康, 李国栋, 等. 富含稀土白云选铁尾矿制备的微波吸收材料特性研究[J]. 稀土, 2003, 24(2): 68-70. YUN Y H, TAI X K, LI G D, et al. Research on the properties of microwave absorption materials made by the tailingsof rich rare earth from lron ore dressing in Baiyunebo[J]. Chinese Rare Earths, 2003, 24(2): 68-70 (in Chinese). [60] 邹 正, 宣爱国, 吴元欣, 等. 铜铁尾矿制酸烧渣制备纳米Fe/SiO2核壳复合粒子的微波吸收性能[J]. 化工学报, 2009, 60(5): 1322-1326. ZOU Z, XUAN A G, WU Y X, et al. Preparation of nano Fe/SiO2 core-shell composite particles from copper/iron ore cinder and their microwave absorption properties[J]. Journal of the Chemical Industry and Engineering Society of China, 2009, 60(5): 1322-1326 (in Chinese). [61] ZHAO X, HAO W J, ZHAO F, et al. Preparation and properties of magnesium oxysulfide inorganic microwave absorbing coating[J]. Journal of Physics: Conference Series, 2021, 2029(1): 012121. [62] 张梦萌, 于红超, 何飞强. 一种铁尾矿/二氧化钛/聚吡咯复合吸波材料及其制备方法: CN108359094A[P]. 2018-08-03. ZHANG M M, YU H C, HE F Q. Iron tailings/titanium dioxide/polypyrrole composite absorbing material and preparation method thereof: CN108359094A[P]. 2018-08-03 (in Chinese). [63] SHI Y F, JING H Q, LIU B B, et al. Electromagnetic (EM) wave absorption properties of cementitious building composites containing MnZn ferrite: preferable effective bandwidth and thickness via iron and graphite addition[J]. Journal of Magnetism and Magnetic Materials, 2022, 560: 169555. [64] REN M M, LI F X, GAO P, et al. Design and preparation of double-layer structured cement-based composite with inspiring microwave absorbing property[J]. Construction and Building Materials, 2020, 263: 120670. [65] BAI Y H, XIE B, LI H W, et al. Mechanical properties and electromagnetic absorption characteristics of foam cement-based absorbing materials[J]. Construction and Building Materials, 2022, 330: 127221. [66] YUE L, YANG Y Y, ZHOU Q, et al. Broadband electromagnetic wave absorbing performance by designing the foam structure and double-layer for cement-based composites containing MWCNTs[J]. Cement and Concrete Composites, 2022, 131: 104595. [67] SHEN Y N, LI Q H, XU S L. Microwave absorption properties of cementitious composites containing carbonyl iron powder (CIP) and fly ash: formation and effect of CIP core-shell structure[J]. Cement and Concrete Composites, 2022, 131: 104559. [68] KAUR H, MARWAHA A, SINGH C, et al. Investigation of structural, hysteresis and electromagnetic parameters for microwave absorption application in doped Ba-Sr hexagonal ferrites at X-band[J]. Journal of Alloys and Compounds, 2019, 806: 1220-1229. [69] CHEN N Y, ZHOU J T, YAO Z J, et al. Fabrication of Nd-doped Ni-Zn ferrite/multi-walled carbon nanotubes composites with effective microwave absorption properties[J]. Ceramics International, 2021, 47(8): 10545-10554. [70] 何 楠, 郝万军, 陈伟鹏, 等. 掺铁尾矿泡沫水泥复合材料的吸波性能研究[J]. 化工新型材料, 2018, 46(10): 101-104. HE N, HAO W J, CHEN W P, et al. Research on abosorbing property of iron tailing blended foamed cement composite[J]. New Chemical Materials, 2018, 46(10): 101-104 (in Chinese). [71] 何 楠, 郝万军, 冯发念, 等. 掺铁尾矿粉硫氧镁泡沫水泥复合材料的吸波性能[J]. 材料科学与工程学报, 2019, 37(3): 385-391. HE N, HAO W J, FENG F N, et al. Electromagnetic wave absorption of iron tailings powder incorporated magnesium oxysulfate foam cement composites[J]. Journal of Materials Science and Engineering, 2019, 37(3): 385-391 (in Chinese). [72] 王 荣, 李华伟, 杨惠婷, 等. 复合吸波剂增强铁尾矿水泥基吸波材料的吸波机理与制备方法[J]. 金属矿山, 2022(6): 216-224. WANG R, LI H W, YANG H T, et al. Electromagnetic wave absorbing mechanism and preparation method of iron tailings cement-based wave absorbing materials reinforced by compound absorber[J]. Metal Mine, 2022(6): 216-224 (in Chinese). [73] 李华伟, 郑贵阳, 王 荣, 等. 铁尾矿-钢渣基复合吸波材料的制备与性能研究[J]. 金属矿山, 2022(2): 224-230. LI H W, ZHENG G Y, WANG R, et al. Study on the preparation and properties of iron tailings-steel slag based composite microwave absorbing materials[J]. Metal Mine, 2022(2): 224-230 (in Chinese). [74] 林晓甜, 陈 芳, 甄 琦, 等. 多壁碳纳米管-铁尾矿水泥基材料电学和力学性能研究[J]. 矿业研究与开发, 2022, 42(8): 93-99. LIN X T, CHEN F, ZHEN Q, et al. Study on electrical and mechanical properties of cement-based materials with multi-walled carbon nanotubes and iron tailings[J]. Mining Research and Development, 2022, 42(8): 93-99 (in Chinese). [75] BAI B, ZHU Y P, MIAO J F, et al. Electromagnetic wave absorption performance and mechanisms of geoploymer-based composites containing core-shell SiO2@Fe3O4 nanoparticles[J]. Ceramics International, 2022, 48(2): 2755-2762. [76] BAI B, ZHU Y P, NIU M T, et al. Modulation of electromagnetic absorption and shielding properties of geopolymer nanocomposites by designing core-shell structure of carbon nanotubes[J]. Ceramics International, 2022, 48(18): 26098-26106. [77] LI Z, LI Y, SHI B, et al. Dual gradient direct ink writing of functional geopolymer-based carbonyl-iron/graphene composites for adjustable broadband microwave absorption[J]. Ceramics International, 2022, 48(7): 9277-9285. [78] ZHANG Y, HE P G, YUAN J K, et al. Effects of graphite on the mechanical and microwave absorption properties of geopolymer based composites[J]. Ceramics International, 2017, 43(2): 2325-2332. [79] HE P G, JIA L Y, MA G R, et al. Effects of fiber contents on the mechanical and microwave absorbent properties of carbon fiber felt reinforced geopolymer composites[J]. Ceramics International, 2018, 44(9): 10726-10734. |
[1] | 陈邢, 于峰, 曹越, 方圆. 铁尾矿粉-脱硫灰胶凝材料的制备及性能研究[J]. 硅酸盐通报, 2023, 42(1): 180-187. |
[2] | 刘名扬, 周彬, 颜峰, 陈龙江, 侯美晴. 铁尾矿-钢渣集料微表处混合料路用性能及耐久性试验研究[J]. 硅酸盐通报, 2022, 41(9): 3176-3189. |
[3] | 梁志鹏, 孙畅, 毕万利, 赵明泽, 关岩. 高硅型铁尾矿机械活化效果及机理研究[J]. 硅酸盐通报, 2022, 41(8): 2810-2818. |
[4] | 曹港豪, 蹇守卫, 魏博, 李宝栋, 赵金鹏. 铁尾矿砂基环氧树脂透水材料力学性能及界面特性研究[J]. 硅酸盐通报, 2022, 41(7): 2384-2392. |
[5] | 李润丰, 刘艳军, 涂玉波, 王林俊, 温晓庆, 任磊. 石墨烯增强复合相变储能材料的热学性能研究[J]. 硅酸盐通报, 2022, 41(7): 2542-2548. |
[6] | 王民, 阎爽, 李亚威. 细铁尾矿砂和养护条件对高强碱激发砂浆力学性能及微观结构的影响[J]. 硅酸盐通报, 2022, 41(6): 2082-2089. |
[7] | 李一凡, 王社良, 徐晋, 白娇娇, 全晓旖, 徐卫锋. 硫酸盐-冻融循环下自感应水泥砂浆的耐久及压敏性能[J]. 硅酸盐通报, 2022, 41(3): 777-786. |
[8] | 施麟芸, 匡敬忠, 刘松柏, 鲁亚, 严峻. 铜尾矿建材化应用研究现状及矿物组成影响作用规律[J]. 硅酸盐通报, 2022, 41(10): 3511-3524. |
[9] | 于明飞, 姚伦标, 卿玉长, 全京敏. 含频率选择表面耐高温吸波涂层的高温吸波性能[J]. 硅酸盐通报, 2021, 40(7): 2401-2408. |
[10] | 申艳军, 白志鹏, 郝建帅, 廖太昌, 李曙光, 许汉华. 尾矿制备混凝土研究进展与利用现状分析[J]. 硅酸盐通报, 2021, 40(3): 845-857. |
[11] | 陈志友, 苏小琼, 杨志文, 肖洪旭. 锂云母锂渣性质及利用研究现状[J]. 硅酸盐通报, 2021, 40(3): 877-882. |
[12] | 李晓光, 侯鑫鑫, 梁保真, 王攀奇, Saddam Ali. 铁尾矿陶粒混凝土的制备与性能分析[J]. 硅酸盐通报, 2021, 40(3): 929-935. |
[13] | 申艳军, 郝建帅, 白志鹏, 周子涵, 李玉根, 廖太昌, 张凯峰. 沙漠砂制备混凝土研究进展[J]. 硅酸盐通报, 2021, 40(12): 3879-3890. |
[14] | 王洪国, 苏纪壮, 张民, 汲平, 王鑫洋, 刘健. 振动搅拌对掺铁尾矿砂水泥稳定碎石混合料的影响研究[J]. 硅酸盐通报, 2021, 40(12): 4209-4216. |
[15] | 宋少民;陈泓燕. 铁尾矿微粉对低熟料胶凝材料混凝土性能的影响研究[J]. 硅酸盐通报, 2020, 39(8): 2557-2566. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||