[1] 徐志华, 邓俊双, 刘战鳌, 等. 机制砂中细粉MB值对混凝土性能影响规律的研究[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(6): 1151-1157. XU Z H, DENG J S, LIU Z A, et al. Study on the influence law of MB value of microfines in manufactured sand on concrete performances[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(6): 1151-1157 (in Chinese). [2] 李先海, 张 覃, 卯 松, 等. 赤泥和磷渣调控水泥混凝土界面过渡区微结构的研究[J]. 硅酸盐通报, 2019, 38(12): 3946-3951. LI X H, ZHANG Q, MAO S, et al. Effects of red mud and phosphorous slag on interfacial transition zone microstructure of cement concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3946-3951 (in Chinese). [3] 巨浩波, 吕生华, 刘晶晶. 砂石质量对混凝土性能影响的研究进展[J]. 硅酸盐通报, 2013, 32(12): 2538-2543+2549. JU H B, LV S H, LIU J J. Research progress on effect of aggregate quality on concrete performance[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(12): 2538-2543+2549 (in Chinese). [4] 袁 杰, 范永德, 葛 勇, 等. 含泥量对高性能混凝土耐久性能的影响[J]. 混凝土, 2003(8): 31-33. YUAN J, FAN Y D, GE Y, et al. Effect of sediment content on durability of high performance concrete[J]. Concrete, 2003(8): 31-33 (in Chinese). [5] CHEN X, GUO Y G, LI B, et al. Coupled effects of the content and methylene blue value (MBV) of microfines on the performance of manufactured sand concrete[J]. Construction and Building Materials, 2020, 240: 117953. [6] 郭 猛, 杨 杰, 黄鹏宇, 等. 花岗岩机制砂石粉MB值对混凝土性能的影响[J]. 新型建筑材料, 2022, 49(4): 76-80. GUO M, YANG J, HUANG P Y, et al. Effect of MB value of granite-made sand powder on concrete performance[J]. New Building Materials, 2022, 49(4): 76-80 (in Chinese). [7] 王稷良. 机制砂特性对混凝土性能的影响及机理研究[D]. 武汉: 武汉理工大学, 2008. WANG J L. Research of effects and mechanism of manufactured sand characteristics on Portland cement concrete[D]. Wuhan: Wuhan University of Technology, 2008 (in Chinese). [8] 夏京亮, 高彦鹏, 张鹏翔, 等. 机制砂MB值对混凝土电通量和氯离子扩散系数的影响[J]. 建筑科学, 2021, 37(3): 78-84. XIA J L, GAO Y P, ZHANG P X, et al. Effect of machine sand MB value on electric flux and chloride diffusion coefficient of concrete[J]. Building Science, 2021, 37(3): 78-84 (in Chinese). [9] 王建国, 周海龙, 葛成龙, 等. 石粉对高强机制砂混凝土工作性能和力学性能的影响[J]. 排灌机械工程学报, 2021, 39(8): 804-810. WANG J G, ZHOU H L, GE C L, et al. Influence of stone powder on working and mechanical properties of high-strength manufactured sand concrete[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(8): 804-810 (in Chinese). [10] 李 波, 周海龙, 梁玉婧, 等. 偏高岭土对高强机制砂混凝土性能的影响[J]. 排灌机械工程学报, 2021, 39(11): 1154-1160. LI B, ZHOU H L, LIANG Y J, et al. Effect of metakaolin content on performance of high strength manufactured sand concrete[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(11): 1154-1160 (in Chinese). [11] 于本田, 陈延飞, 王 焕, 等. 大掺量高吸附性石粉高强机制砂混凝土收缩开裂抑制试验[J]. 复合材料学报, 2021, 38(8): 2737-2746. YU B T, CHEN Y F, WANG H, et al. Experiment on control measures of shrinkage and cracking of high strength manufactured sand concrete containing a large amount of high absorbency stone powder[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2737-2746 (in Chinese). [12] JIN S S, ZHANG J X, HAN S. Fractal analysis of relation between strength and pore structure of hardened mortar[J]. Construction and Building Materials, 2017, 135: 1-7. [13] BU J, TIAN Z. Relationship between pore structure and compressive strength of concrete: experiments and statistical modeling[J]. Sādhanā, 2016, 41(3): 337-344. [14] 郭剑飞. 混凝土孔结构与强度关系理论研究[D]. 杭州: 浙江大学, 2004. GUO J F. The theoretical research of the pore structure and strength of concrete[D]. Hangzhou: Zhejiang University, 2004 (in Chinese). [15] LIAN C, ZHUGE Y, BEECHAM S. The relationship between porosity and strength for porous concrete[J]. Construction and Building Materials, 2011, 25(11): 4294-4298. [16] 柯国炬, 卢忠飞, 郝以党, 等. 路面机制砂水泥混凝土耐磨性影响因素灰色关联分析[J]. 硅酸盐通报, 2011, 30(1): 216-219. KE G J, LU Z F, HAO Y D, et al. Gray relation analysis in influential factors of abrasion resistance of pavement manufactured sand cement concrete[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(1): 216-219 (in Chinese). [17] 刘红瑛. 影响沥青混凝土水稳定性的灰关联熵分析[J]. 长安大学学报(自然科学版), 2003, 23(6): 7-10. LIU H Y. Grey relation entropy method to analyze moisture stability of asphalt concrete[J]. Journal of Chang’an University (Natural Science Edition), 2003, 23(6): 7-10 (in Chinese). [18] 刘 倩, 申向东, 董瑞鑫, 等. 孔隙结构对风积沙混凝土抗压强度影响规律的灰熵分析[J]. 农业工程学报, 2019, 35(10): 108-114. LIU Q, SHEN X D, DONG R X, et al. Grey entropy analysis on effect of pore structure on compressive strength of aeolian sand concrete[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 108-114 (in Chinese). [19] DE J CANO-BARRITA P F, CASTELLANOS F, RAMÍREZ-ARELLANES S, et al. Monitoring compressive strength of concrete by nuclear magnetic resonance, ultrasound, and rebound hammer[J]. ACI Materials Journal, 2015, 112(1): 147-154. [20] 刘 卫, 邢 立, 孙佃庆, 等. 核磁共振录井[M]. 北京: 石油工业出版社, 2011. LIU W, XING L, SUN D Q, et al. Nuclear magnetic resonance logging[M]. Beijing: Petroleum Industry Press, 2011 (in Chinese). [21] DAVIES S, KALAM M Z, PACKER K J, et al. Pore-size distributions from nuclear magnetic resonance spin-lattice relaxation measurements of fluid-saturated porous solids. II. Applications to reservoir core samples[J]. Journal of Applied Physics, 1990, 67(6): 3171-3176. [22] 张承志. 商品混凝土[M]. 北京: 化学工业出版社, 2006: 110-111. ZHANG C Z. Commercial concrete[M]. BeiJing: Chemical Industry Publishing House, 2006: 110-111 (in Chinese). [23] 李彰明, 曾文秀, 高美连. 不同荷载水平及速率下超软土水相核磁共振试验研究[J]. 物理学报, 2014, 63(1): 018202. LI Z M, ZENG W X, GAO M L. Nuclear magnetic resonance test and analysis on water phase of the ultra-soft soil under different load level and rate[J]. Acta Physica Sinica, 2014, 63(1): 018202 (in Chinese). [24] 王稷良, 王在杭, 宋国林, 等. 机制砂MB值对路面混凝土抗盐冻性能的影响及机理研究[J]. 公路交通科技, 2016, 33(8): 31-36. WANG J L, WANG Z H, SONG G L, et al. Study on effect of MB value of manufactured sand on salt-freeze resistance of pavement concrete and its mechanism[J]. Journal of Highway and Transportation Research and Development, 2016, 33(8): 31-36 (in Chinese). [25] 秦 丹. 泥粉中矿物组成和含量对水泥水化及混凝土性能的影响[D]. 重庆: 重庆大学, 2021. QIN D. Effect of minerals composition and content in clay powder on cement hydration and concrete properties[D]. Chongqing: Chongqing University, 2021 (in Chinese). [26] 吴中伟, 张鸿直. 膨胀混凝土[M]. 北京: 中国铁道出版社, 1990. WU Z W, ZHANG H Z. Expanded concrete[M]. Beijing: China Railway Publishing House, 1990 (in Chinese). [27] 祝斯月, 陈拴发, 秦先涛, 等. 基于灰关联熵分析法的高粘改性沥青关键指标[J]. 材料科学与工程学报, 2014, 32(6): 863-867. ZHU S Y, CHEN S F, QIN X T, et al. Key indexes of high viscosity modified asphalt based on grey correlation entropy analysis[J]. Journal of Materials Science and Engineering, 2014, 32(6): 863-867 (in Chinese). [28] 刘思峰, 杨英杰, 吴利丰, 等. 灰色系统理论及其应用[M]. 北京: 科学出版社, 2014. LIU S F, YANG Y J, WU L F, et al. Gray system theory and its applications[M]. Beijing: Science Press, 2014 (in Chinese). |