[1] 张宁轩, 肖国庆, 段 锋, 等. 铜冶炼阳极炉镁铬质耐火材料损毁机理[J]. 硅酸盐学报, 2021, 49(9): 2025-2035. ZHANG N X, XIAO G Q, DUAN F, et al. Damage mechanism of magnesium-chromium refractories for copper smelting anode furnace[J]. Journal of the Chinese Ceramic Society, 2021, 49(9): 2025-2035 (in Chinese). [2] 和 弦, 李 勇, 张秀华, 等. 长寿热风炉用刚玉-莫来石耐火材料损毁机理[J]. 硅酸盐学报, 2019, 47(12): 1841-1846. HE X, LI Y, ZHANG X H, et al. Damage mechanism of corundum-mullite refractory for hot stove with long campaign[J]. Journal of the Chinese Ceramic Society, 2019, 47(12): 1841-1846 (in Chinese). [3] 李人骏, 张 玲, 李 勇, 等. 套筒石灰窑拱桥用方镁石-尖晶石耐火砖的损毁原因分析[J]. 耐火材料, 2021, 55(2): 144-147. LI R J, ZHANG L, LI Y, et al. Damage analysis of periclase-spinel refractory bricks in sleeve lime kiln arch bridge[J]. Refractories, 2021, 55(2): 144-147 (in Chinese). [4] 姜葱葱, 董祎然, 黄世峰, 等. 基于原位发泡工艺的固废基发泡陶瓷研究进展[J]. 硅酸盐学报, 2022, 50(9): 2510-2526. JIANG C C, DONG Y R, HUANG S F, et al. Research progress on solid waste-based foamed ceramics based on in-situ foaming process[J]. Journal of the Chinese Ceramic Society, 2022, 50(9): 2510-2526 (in Chinese). [5] REN X M, MA B Y, ZHANG G L, et al. Preparation and properties of MgAl2O4 spinel ceramics by double-doped Sm2O3-(Y2O3, Nb2O5 and La2O3)[J]. Materials Chemistry and Physics, 2020, 252: 123309. [6] PENG W D, CHEN Z, YAN W, et al. Advanced lightweight periclase-magnesium aluminate spinel refractories with high mechanical properties and high corrosion resistance[J]. Construction and Building Materials, 2021, 291: 123388. [7] FU L P, GU H Z, HUANG A, et al. Design, fabrication and properties of lightweight wear lining refractories: a review[J]. Journal of the European Ceramic Society, 2022, 42(3): 744-763. [8] HOSSAIN S S, ROY P K. Preparation of multi-layered (dense-porous) lightweight magnesium-aluminum spinel refractory[J]. Ceramics International, 2021, 47(9): 13216-13220. [9] 刘 燕, 桑绍柏, 武 奇, 等. 玻璃陶瓷涂层对轻量莫来石-碳化硅材料抗碱侵蚀性能的影响[J]. 硅酸盐学报, 2021, 49(12): 2751-2759. LIU Y, SANG S B, WU Q, et al. Influence of glass ceramic coating on alkali resistance of lightweight mullite-SiC composites[J]. Journal of the Chinese Ceramic Society, 2021, 49(12): 2751-2759 (in Chinese). [10] 孙 义, 孙红刚, 杜一昊. 烧结多孔骨料制备高纯氧化锆隔热制品的性能研究[J]. 耐火材料, 2021, 55(1): 69-72. SUN Y, SUN H G, DU Y H. Properties of high purity zirconia thermal insulation refractories prepared by sintered porous aggregates[J]. Refractories, 2021, 55(1): 69-72 (in Chinese). [11] HU S H, HUANG A, JIA Q L, et al. Degradation of magnesia-chromite refractory in ZnO-containing ferrous calcium silicate slags[J]. Ceramics International, 2021, 47(8): 11276-11284. [12] SHI J Y, LIU B J, LIU Y C, et al. Preparation and characterization of lightweight aggregate foamed geopolymer concretes aerated using hydrogen peroxide[J]. Construction and Building Materials, 2020, 256: 119442. [13] ZHOU W Y, YAN W, MA S B, et al. Degradation mechanisms of periclase-magnesium aluminate spinel refractory bricks used in the upper transition zone of a cement rotary kiln[J]. Construction and Building Materials, 2021, 272: 121617. [14] FU L P, GU H Z, HUANG A, et al. Possible improvements of alumina-magnesia castable by lightweight microporous aggregates[J]. Ceramics International, 2015, 41(1): 1263-1270. [15] CHEN Z, YAN W, DAI Y J, et al. Effect of microporous corundum aggregates on microstructure and mechanical properties of lightweight corundum refractories[J]. Ceramics International, 2019, 45(7): 8533-8538. [16] YAN W, WU G Y, MA S B, et al. Energy efficient lightweight periclase-magnesium alumina spinel castables containing porous aggregates for the working lining of steel ladles[J]. Journal of the European Ceramic Society, 2018, 38(12): 4276-4282. [17] ZOU Y, GU H Z, HUANG A, et al. Effects of aggregate microstructure on slag resistance of lightweight Al2O3-MgO castable[J]. Ceramics International, 2017, 43(18): 16495-16501. [18] LEI Z W, SUN X T, ZHU S F, et al. Nature inspired mxene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting[J]. Nano-Micro Letters, 2022, 14(1): 10. [19] WU G Y, YAN W, SCHAFFÖNER S, et al. A comparative study on the microstructures and mechanical properties of a dense and a lightweight magnesia refractories[J]. Journal of Alloys and Compounds, 2019, 796: 131-137. [20] YUAN C, LIU Y, LI G Q, et al. Comparison study on effect of nano-sized Al2O3 addition on the corrosion resistance of microporous magnesia aggregates against tundish slag[J]. Ceramics International, 2022, 48(4): 5139-5144. [21] 李思蒙, 黄建国. 镁铝尖晶石多孔陶瓷的制备及性能[J]. 硅酸盐学报, 2018, 46(9): 1257-1262. LI S M, HUANG J G. Preparation and properties of gel-casting magnesia-alumina spinel porous ceramics[J]. Journal of the Chinese Ceramic Society, 2018, 46(9): 1257-1262 (in Chinese). [22] YAN J J, YAN W, CHEN Z, et al. A strategy for controlling microstructure and mechanical properties of microporous spinel (MgAl2O4) aggregates from magnesite and Al(OH)3[J]. Journal of Alloys and Compounds, 2022, 896: 163088. [23] 高振昕, 张 巍, 黄振武, 等. 方镁石、刚玉、尖晶石、莫来石等晶体特异形貌的表征[J]. 耐火材料, 2021, 55(2): 93-97. GAO Z X, ZHANG W, HUANG Z W, et al. Characterization of special morphology of periclase, corundum, spinel and mullite[J]. Refractories, 2021, 55(2): 93-97 (in Chinese). [24] LIN X L, YAN W, MA S B, et al. Corrosion and adherence properties of cement clinker on porous periclase-spinel refractory aggregates with varying spinel content[J]. Ceramics International, 2017, 43(6): 4984-4991. [25] YUAN C, LIU Y, LI G Q, et al. Adsorption mechanism of oxide inclusions by microporous magnesia aggregates in tundish[J]. Ceramics International, 2022, 48(1): 427-435. |