[1] 李 楠, 顾华志, 赵惠忠. 耐火材料学[M]. 北京: 冶金工业出版社, 2010: 118-129. LI N, GU H Z, ZHAO H Z. Refractory science[M]. Beijing: Metallurgical Industry Press, 2010: 118-129 (in Chinese). [2] 李素平, 张慧敏, 李丙文, 等. 硅砖的研究进展及应用[J]. 耐火材料, 2015, 49(3): 238-240. LI S P, ZHANG H M, LI B W, et al. Research progress and application of silica bricks[J]. Refractories, 2015, 49(3): 238-240 (in Chinese). [3] 郑德胜, 薄 钧, 甘菲芳, 等. 高导热硅砖在焦炉上的应用[J]. 耐火材料, 2017, 51(4): 287-288. ZHENG D S, BO J, GAN F F, et al. Application of high thermal conductivity silica brick in coke oven[J]. Refractories, 2017, 51(4): 287-288 (in Chinese). [4] 任 博, 桑绍柏, 徐义彪, 等. 石油焦煅烧炉用后硅砖分析及其损毁机制初探[J]. 耐火材料, 2016, 50(2): 104-108. REN B, SANG S B, XU Y B, et al. Analysis of used silica bricks from petroleum coke calcinators and their corrosion mechanism[J]. Refractories, 2016, 50(2): 104-108 (in Chinese). [5] 任刚伟, 常 亮, 卫晓辉, 等. 硅砖中α-方石英的晶体结构与形貌[J]. 硅酸盐学报, 2006, 34(1): 123-126. REN G W, CHANG L, WEI X H, et al. Crystal structure and morphology of α-cristobalite in silica bricks[J]. Journal of the Chinese Ceramic Society, 2006, 34(1): 123-126 (in Chinese). [6] PRYDE A K A, DOVE M T. On the sequence of phase transitions in tridymite[J]. Physics and Chemistry of Minerals, 1998, 26(2): 171-179. [7] SCHNEIDER H, MAJDIC A, VASUDEVAN R. Kinetics of the quartz-cristobalite transformation in refractory-grade silica materials[J]. Materials Science Forum, 1986, 7: 91-102. [8] 王维邦. 耐火材料工艺学[M]. 北京: 冶金工业出版社, 1990: 123. WANG W B. Refractory technology[M]. Beijing: Metallurgical Industry Press, 1990: 123 (in Chinese). [9] 徐平坤, 魏国钊. 耐火材料新工艺技术[M]. 北京: 冶金工业出版社, 2005: 29-34. XU P K, WEI G Z. New technology of refractory materials[M]. Beijing: Metallurgical Industry Press, 2005: 29-34 (in Chinese). [10] 张尼尼. 高级硅砖中SiO2变体的X衍射分析[J]. 玻璃与搪瓷, 1993, 21(4): 20-26. ZHANG N N. X-ray diffraction analysis of SiO2 crystals in high-duty silica brickt[J]. Glass & Enamel, 1993, 21(4): 20-26 (in Chinese). [11] 柴俊兰. 矿化剂对硅砖相变及烧结行为的影响[J]. 耐火材料, 2002, 36(1): 30. CHAI J L. Effect of mineralizer on phase transformation and sintering behavior of silicon brick[J]. Refractories, 2002, 36(1): 30 (in Chinese). [12] 孙 彪, 翟萌萌, 赵鹏飞, 等. 碳化硅粉添加量对碳素炉用硅砖性能的影响[J]. 山东冶金, 2018, 40(3): 27-29. SUN B, ZHAI M M, ZHAO P F, et al. Effect of adding amount of silicon carbide powder on properties of silica brick for carbon furnace[J]. Shandong Metallurgy, 2018, 40(3): 27-29 (in Chinese). [13] MANIVASAKAN P, RAJENDRAN V, RAUTA P R, et al. Effect of TiO2 nanoparticles on properties of silica refractory[J]. Journal of the American Ceramic Society, 2010, 93(8): 2236-2243. [14] 王 威. 服役条件下熔融硅砖的组成和结构演变与其断裂行为的相关性研究[D]. 武汉: 武汉科技大学, 2019. WANG W. Correlation between composition and structural evolution of fused silica brick and fracture behavior under service condition[D]. Wuhan: Wuhan University of Science and Technology, 2019 (in Chinese). [15] YANG J Y, XU L H, HAO H S, et al. Effect of TiO2 on the thermal conductivity of eco-friendly silica bricks fabricated by Yellow River silt[J]. Materials Science Forum, 2009, 610/611/612/613: 206-210. [16] 刘爱平, 王者来, 赵鹏飞, 等. 膨润土添加量对焦炉用硅砖性能的影响[J]. 山东冶金, 2019, 41(5): 40-41+46. LIU A P, WANG Z L, ZHAO P F, et al. Effects of adding content of bentonite on properties of coke oven[J]. Shandong Metallurgy, 2019, 41(5): 40-41+46 (in Chinese). [17] 张志豪, 张 玲, 关 岩, 等. 纳米SiO2的引入方式对焦炉硅砖导热性能的影响[J]. 冶金能源, 2018,37(3): 47-50. ZHANG Z H, ZHANG L, GUAN Y, et al. Effect of nano SiO2 on the thermal conductivity of silica brick for coke oven[J]. Energy for Metallurgical Industry, 2018, 37(3): 47-50 (in Chinese). |