欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (3): 1106-1114.

所属专题: 耐火材料

• 耐火材料 • 上一篇    下一篇

红柱石原料高温结构演变及抗钾蒸气侵蚀行为研究

王治峰1, 马淑龙2, 任博3, 李燕京2, 徐义彪1, 桑绍柏1, 李亚伟1   

  1. 1.武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081;
    2.北京金隅通达耐火技术有限公司,北京 100085;
    3.北京科技大学材料科学与工程学院,北京 100083
  • 收稿日期:2022-10-14 修订日期:2022-11-20 出版日期:2023-03-15 发布日期:2023-03-31
  • 通信作者: 李亚伟,博士,教授。E-mail:liyawei@wust.edu.cn
  • 作者简介:王治峰(1982—),男,博士研究生。主要从事耐火材料的研究。E-mail:150070831@qq.com
  • 基金资助:
    国家重点研发计划(2019YFC1904900)

Microstructural Evolution of Andalusite at Elevated Temperature and Its Potassium Vapor Attack Resistance Behavior

WANG Zhifeng1, MA Shulong2, REN Bo3, LI Yanjing2, XU Yibiao1, SANG Shaobai1, LI Yawei1   

  1. 1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China;
    2. Beijing Jinyu Tongda Refractory Technologies Ltd., Beijing 100085, China;
    3. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2022-10-14 Revised:2022-11-20 Online:2023-03-15 Published:2023-03-31

摘要: 红柱石是铝硅系耐火材料重要的原料之一,因完全莫来石化后具有莫来石-高硅氧玻璃相相间的结构而表现出优异的抗碱侵蚀性能。然而,其莫来石化程度与抗碱侵蚀性能之间的关系尚未厘清。为此,本工作以粒度为3~5 mm的红柱石为研究对象,在1 450~1 600 ℃下热处理红柱石3 h,研究了红柱石的莫来石化过程与结构演变,并采用碱蒸气法研究了抗碱侵蚀行为。结果表明,随着热处理温度的提高,红柱石表面及裂纹附近先转变形成莫来石-高硅氧玻璃相结构,随后莫来石化转变不断向内部发展,直至完全莫来石化。红柱石莫来石化程度不同决定了其不同的抗碱侵蚀行为。1 450 ℃热处理后的红柱石表面及大裂纹附近形成的莫来石-高硅氧玻璃相复合层较薄,侵蚀以红柱石与钾蒸气直接反应为主,抗碱侵蚀性能较差;1 500 ℃及以上温度热处理的红柱石表面及大裂纹附近形成了一定厚度的莫来石-高硅氧玻璃相复合层,钾蒸气首先与高硅氧玻璃相反应形成含钾硅酸盐液相,随后该液相对莫来石相产生侵蚀溶解,阻止了碱蒸气对莫来石的直接反应侵蚀,从而使红柱石表现出优良的抗碱侵蚀性能。

关键词: 红柱石, 结构演变, 钾蒸气, 碱侵蚀, 莫来石, 高硅氧玻璃相

Abstract: Andalusite is one of the most important raw materials for alumina-silica refractories, exhibiting excellent alkali attack resistance due to its mullite-high silica glass phase structure after complete mullitization. However, the correlation of its mullitization process and alkali attack resistance has not been fully revealed. In this work, the mullitization process and microstructural evolution of andalusite with the size of 3~5 mm after firing at 1 450~1 600 ℃ for 3 h were investigated, and the alkali attack resistance behavior was evaluated according potassium vapor method. The results show that with the increase of calcining temperature, the andalusite on the surface and near the crack area transforms into mullite-high silica glass phase structure firstly, and then the transformation occurres inside gradually until completing mullitization. The alkali attack resistance behavior depends on the degree of mullitization. After calcining at 1 450 ℃, a thin layer of mullite-high silica glass phase composite structure is formed, and the main alkali attack process occurs directly between potassium vapor and andalusite, resulting in poor alkali attack resistance. After calcining at 1 500 ℃ and above, a mullite-high silica glass phase composite layer with a certain thickness is formed on the surface and near the large crack of andalusite. Potassium vapor and high silica glass phase firstly react to form potassium silicate liquid phase, and then the liquid phase produces erosion and dissolution on mullite phase, preventing the direct reaction erosion of alkali vapor on mullite. Thus, andalusite shows excellent alkali attack resistance.

Key words: andalusite, microstructural evolution, potassium vapor, alkali attack, mullite, high silica glass phase

中图分类号: