硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (2): 383-392.
所属专题: 水泥混凝土
• 水泥混凝土 • 下一篇
沈鑫1, 郭随华1, 李文伟2, 陆超2, 张坤悦1, 王敏1, 文寨军1
收稿日期:
2022-09-29
修订日期:
2022-11-30
出版日期:
2023-02-15
发布日期:
2023-03-07
通信作者:
郭随华,博士,教授级高级工程师。E-mail:sh_guo@sina.com
作者简介:
沈 鑫(1998—),男,硕士研究生。主要从事特种水泥的研究。E-mail:599292237@qq.com
基金资助:
SHEN Xin1, GUO Suihua1, LI Wenwei2, LU Chao2, ZHANG Kunyue1, WANG Min1, WEN Zhaijun1
Received:
2022-09-29
Revised:
2022-11-30
Online:
2023-02-15
Published:
2023-03-07
摘要: 低热硅酸盐水泥因水化热低而被大量应用于高等级大体积混凝土工程以降低温度应力给结构带来的开裂风险。此外,高温下强度增长稳定的特点决定其能在高热施工环境发挥作用,优良的体积稳定性有利于解决混凝土结构开裂问题,较高的后期强度和优良的抗侵蚀性能适合用于高性能混凝土的制备。本文从水化、性能等角度出发,分析了低热硅酸盐水泥在水化调控、水化产物及微观结构、性能优化等方面存在的部分问题,总结了低热硅酸盐水泥高温耐受、抗侵蚀、体积稳定等性能特点,提出了低热硅酸盐水泥在严酷环境、高热环境中的应用展望。
中图分类号:
沈鑫, 郭随华, 李文伟, 陆超, 张坤悦, 王敏, 文寨军. 低热硅酸盐水泥水化及性能研究现状[J]. 硅酸盐通报, 2023, 42(2): 383-392.
SHEN Xin, GUO Suihua, LI Wenwei, LU Chao, ZHANG Kunyue, WANG Min, WEN Zhaijun. Research Status on Hydration and Properties of Low-Heat Portland Cement[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(2): 383-392.
[1] JOHN V M, QUATTRONE M, ABRAO P C R A, et al. Rethinking cement standards: opportunities for a better future[J]. Cement and Concrete Research, 2019, 124: 105832. [2] DOUGLAS HOOTON R. Future directions for design, specification, testing, and construction of durable concrete structures[J]. Cement and Concrete Research, 2019, 124: 105827. [3] ENVIRONMENT U N, SCRIVENER K L, JOHN V M, et al. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry[J]. Cement and Concrete Research, 2018, 114: 2-26. [4] 马忠诚, 姚 燕, 文寨军, 等. 低热硅酸盐水泥的研究进展[J]. 新型建筑材料, 2019, 46(1): 1-5. MA Z C, YAO Y, WEN Z J, et al. Research progress of low heat Portland cement[J]. New Building Materials, 2019, 46(1): 1-5 (in Chinese). [5] 魏国力, 游杰勇, 李培彦, 等. 低热水泥复掺粉煤灰体系的强度放热与水化演变研究[J]. 混凝土, 2022(2): 54-59. WEI G L, YOU J Y, LI P Y, et al. Study on strength exothermic and hydration evolution of low heat cement mixed with fly ash[J]. Concrete, 2022(2): 54-59 (in Chinese). [6] MA Z C, YAO Y, LIU Z C, et al. Effect of calcination and cooling conditions on mineral compositions and properties of high-magnesia and low-heat Portland cement clinker[J]. Construction and Building Materials, 2020, 260: 119907. [7] 沈 燕, 李雪飘. 贝利特活化的研究进展[J]. 硅酸盐通报, 2018, 37(2): 519-523. SHEN Y, LI X P. Research progress of belite activation[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(2): 519-523 (in Chinese). [8] 吴梦雪, 姚 武, 李 晨, 等. 硼、钠复合掺杂对贝利特-硫铝酸钙水泥性能及微观结构的影响[J]. 材料导报, 2017, 31(5): 128-133. WU M X, YAO W, LI C, et al. Effect of combined addition of boron and sodium on property and micro-structure of beliet-sulphoaluminate cement[J]. Materials Reports, 2017, 31(5): 128-133 (in Chinese). [9] MORSLI K, TORRE Á G, ZAHIR M, et al. Mineralogical phase analysis of alkali and sulfate bearing belite rich laboratory clinkers[J]. Cement and Concrete Research, 2007, 37(5): 639-646. [10] 冯培植, 郭随华. 掺微量元素烧制低钙水泥的研究[J]. 水泥, 1997(3): 6-10. FENG P Z, GUO S H. Research on sintering and producing low calcium cement by adding trace elements[J]. Cement, 1997(3): 6-10 (in Chinese). [11] 肖建敏, 范海宏, 武亚磊, 等. 污泥灰替代粘土煅烧水泥熟料的29Si固体高分辨核磁共振分析[J]. 材料科学与工程学报, 2016, 34(3): 460-464. XIAO J M, FAN H H, WU Y L, et al. 29Si solid-state high resolution NMR analysis of cement clinkers calcined by sewage sludge ash instead of clay[J]. Journal of Materials Science and Engineering, 2016, 34(3): 460-464 (in Chinese). [12] 黄 文, 文寨军, 王 敏. 磷硫复合掺杂对硅酸二钙晶型结构的影响[J]. 硅酸盐通报, 2018, 37(8): 2502-2505+2511. HUANG W, WEN Z J, WANG M. Effects of phosphorus and sulfur doping on the crystal structure of dicalcium silicate[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8): 2502-2505+2511 (in Chinese). [13] CUESTA A, LOSILLA E R, ARANDA M A G, et al. Reactive belite stabilization mechanisms by boron-bearing dopants[J]. Cement and Concrete Research, 2012, 42(4): 598-606. [14] 钟 侚, 蹇守卫, 柯 凯. V5+及Cr3+掺杂对C2S多晶型的影响机制[J]. 济南大学学报(自然科学版), 2011, 25(4): 349-353. ZHONG X, JIAN S W, KE K. Influence of V5+ and Cr3+ doping on polymorphic forms of C2S[J]. Journal of University of Jinan (Science and Technology), 2011, 25(4): 349-353 (in Chinese). [15] 王 政, 巴恒静, 李家和, 等. 固溶异离子对高贝利特水泥性能的影响[J]. 武汉理工大学学报, 2005, 27(7): 33-35+49. WANG Z, BA H J, LI J H, et al. Effect of solid solubility of hetero-ion on properties of high-belite cement[J]. Journal of Wuhan University of Technology, 2005, 27(7): 33-35+49 (in Chinese). [16] KRISKOVA L, PONTIKES Y, ZHANG F, et al. Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate[J]. Cement and Concrete Research, 2014, 55: 59-68. [17] 曲艳召. 水泥细度与碱硫含量对混凝土强度发展的影响[D]. 重庆: 重庆大学, 2012: 27-30. QU Y Z. Effect of cement fineness and content of alkali and sulfur of cement on the development of concrete strength[D]. Chongqing: Chongqing University, 2012: 27-30 (in Chinese). [18] 张五怡, 聂 松, 徐名凤, 等. 高贝利特硫铝酸盐水泥活化研究进展[J]. 硅酸盐通报, 2022, 41(9): 2979-2992. ZHANG W Y, NIE S, XU M F, et al. Research progress on activation of high belite calcium sulphoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 2979-2992 (in Chinese). [19] BOUZIDI M A, TAHAKOURT A, BOUZIDI N, et al. Synthesis and characterization of belite cement with high hydraulic reactivity and low environmental impact[J]. Arabian Journal for Science and Engineering, 2014, 39(12): 8659-8668. [20] SINYOUNG S, KUNCHARIYAKUN K, ASAVAPISIT S, et al. Synthesis of belite cement from nano-silica extracted from two rice husk ashes[J]. Journal of Environmental Management, 2017, 190: 53-60. [21] CHEN Y L, LIN C J, KO M S, et al. Characterization of mortars from belite-rich clinkers produced from inorganic wastes[J]. Cement and Concrete Composites, 2011, 33(2): 261-266. [22] SCRIVENER K L, JUILLAND P, MONTEIRO P J M. Advances in understanding hydration of Portland cement[J]. Cement and Concrete Research, 2015, 78: 38-56. [23] FUJII K, KONDO W. Rate and mechanism of hydration of β-dicalcium silicate[J]. Journal of the American Ceramic Society, 1979, 62(3/4): 161-167. [24] NICOLEAU L, NONAT A, PERREY D. The di- and tricalcium silicate dissolutions[J]. Cement and Concrete Research, 2013, 47: 14-30. [25] ZAJAC M, SKOCEK J, LOTHENBACH B, et al. Late hydration kinetics: indications from thermodynamic analysis of pore solution data[J]. Cement and Concrete Research, 2020, 129: 105975. [26] DURGUN E, MANZANO H, PELLENQ R, et al. Understanding and controlling the reactivity of the calcium silicate phases from first principles[J]. Chemistry of Materials, 2012, 24(7): 1262-1267. [27] WANG Q Q, LI F, SHEN X D, et al. Relation between reactivity and electronic structure for α'L-, β- and γ-dicalcium silicate: a first-principles study[J]. Cement and Concrete Research, 2014, 57: 28-32. [28] SHAHSAVARI R, CHEN L, TAO L. Edge dislocations in dicalcium silicates: experimental observations and atomistic analysis[J]. Cement and Concrete Research, 2016, 90: 80-88. [29] BRAND A S, GORHAM J M, BULLARD J W. Dissolution rate spectra of β-dicalcium silicate in water of varying activity[J]. Cement and Concrete Research, 2019, 118: 69-83. [30] TAYLOR H F W. Cement chemistry[M]. London: Thomas Telford Publishing, 1997. [31] TERMKHAJORNKIT P, VU Q H, BARBARULO R, et al. Dependence of compressive strength on phase assemblage in cement pastes: beyond gel-space ratio—experimental evidence and micromechanical modeling[J]. Cement and Concrete Research, 2014, 56: 1-11. [32] 王 晶, 文寨军, 隋同波, 等. 高贝利特水泥的性能及其水化机理的研究[J]. 建材发展导向, 2004(1): 45-49. WANG J, WEN Z J, SUI T B, et al. Study on properties and hydration mechanism of high belite cement[J]. Development Guide to Building Materials, 2004(1): 45-49 (in Chinese). [33] WANG L, DONG Y, ZHOU S H, et al. Energy saving benefit, mechanical performance, volume stabilities, hydration properties and products of low heat cement-based materials[J]. Energy and Buildings, 2018, 170: 157-169. [34] WANG L, YANG H Q, ZHOU S H, et al. Hydration, mechanical property and C-S-H structure of early-strength low-heat cement-based materials[J]. Materials Letters, 2018, 217: 151-154. [35] WANG L, YANG H Q, ZHOU S H, et al. Mechanical properties, long-term hydration heat, shinkage behavior and crack resistance of dam concrete designed with low heat Portland (LHP) cement and fly ash[J]. Construction and Building Materials, 2018, 187: 1073-1091. [36] 郭随华, 林 震, 苏姣华, 等. 高贝利特硅酸盐水泥的水化和浆体结构[J]. 硅酸盐学报, 2000, 28(s1): 16-21. GUO S H, LIN Z, SU J H, et al. Hydration and paste structure of high belite Portland cement[J]. Journal of the Chinese Ceramic Society, 2000, 28(s1): 16-21 (in Chinese). [37] 王可良, 隋同波, 刘 玲, 等. 高贝利特水泥混凝土的抗拉性能[J]. 硅酸盐学报, 2014, 42(11): 1409-1413. WANG K L, SUI T B, LIU L, et al. Tensile properties of high belite cement concrete[J]. Journal of the Chinese Ceramic Society, 2014, 42(11): 1409-1413 (in Chinese). [38] EL-DIDAMONY H, SHARARA A M, HELMY I M, et al. Hydration characteristics of β-C2S in the presence of some accelerators[J]. Cement and Concrete Research, 1996, 26(8): 1179-1187. [39] SÁNCHEZ-HERRERO M J, FERNÁNDEZ-JIMÉNEZ A, PALOMO A. C3S and C2S hydration in the presence of Na2CO3 and Na2SO4[J]. Journal of the American Ceramic Society, 2017, 100(7): 3188-3198. [40] SÁNCHEZ-HERRERO M J, FERNÁNDEZ-JIMÉNEZ A, PALOMO Á. Alkaline hydration of C2S and C3S[J]. Journal of the American Ceramic Society, 2016, 99(2): 604-611. [41] 吴 蓬, 吕宪俊, 梁志强, 等. 混凝土早强剂的作用机理及应用现状[J]. 金属矿山, 2014(12): 20-25. WU P, LU X J, LIANG Z Q, et al. The mechanism and application of concrete hardening accelerator[J]. Metal Mine, 2014(12): 20-25 (in Chinese). [42] BOHÁČ M, STANĔK T, ZEZULOVÁ A, et al. Early hydration of activated belite-rich cement[J]. Advanced Materials Research, 2019, 1151: 23-27. [43] 邱 满, 管学茂, 刘松辉, 等. 碳化技术提升低热水泥的早期强度[J]. 硅酸盐通报, 2017, 36(10): 3265-3267+3272. QIU M, GUAN X M, LIU S H, et al. Lifting early strength of low heat cement with carbonation technology[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(10): 3265-3267+3272 (in Chinese). [44] SIDDIQUE S, NAQI A L, JANG J G. Influence of water to cement ratio on CO2 uptake capacity of belite-rich cement upon exposure to carbonation curing[J]. Cement and Concrete Composites, 2020, 111: 103616. [45] JANG J G, LEE H K. Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement[J]. Cement and Concrete Research, 2016, 82: 50-57. [46] SUI T B, FAN L, WEN Z J, et al. Properties of belite-rich Portland cement and concrete in China[J]. Journal of Civil Engineering and Architecture, 2015, 9(4): 384-392. [47] 樊启祥, 李文伟, 李新宇. 低热硅酸盐水泥大坝混凝土施工关键技术研究[J]. 水力发电学报, 2017, 36(4): 11-17. FAN Q X, LI W W, LI X Y. Key construction technologies of low heat Portland cement dam concrete[J]. Journal of Hydroelectric Engineering, 2017, 36(4): 11-17 (in Chinese). [48] 杨华全, 李文伟, 王迎春, 等. 低热硅酸盐水泥在三峡工程中的应用[J]. 人民长江, 2007, 38(1): 10-13. YANG H Q, LI W W, WANG Y C, et al. Application of low heat Portland cement in Three Gorges Project[J]. Yangtze River, 2007, 38(1): 10-13 (in Chinese). [49] SUI T B, FAN L, WEN Z J, et al. Study on the properties of high strength concrete using high belite cement[J]. Journal of Advanced Concrete Technology, 2004, 2(2): 201-206. [50] YAHIA A, TANIMURA M. Rheology of belite-cement—effect of w/c and high-range water-reducer type[J]. Construction and Building Materials, 2015, 88: 169-174. [51] GALLUCCI E, ZHANG X, SCRIVENER K L. Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H)[J]. Cement and Concrete Research, 2013, 53: 185-195. [52] NIU D T, ZHANG S H, WANG Y, et al. Effect of temperature on the strength, hydration products and microstructure of shotcrete blended with supplementary cementitious materials[J]. Construction and Building Materials, 2020, 264: 120234. [53] 王 晶, 郭随华, 隋同波, 等. 高贝利特水泥的高温强度特性研究[J]. 中国建材科技, 1999, 8(1): 8-13. WANG J, GUO S H, SUI T B, et al. Study on high temperature strength characteristics of high belite cement[J]. China Building Materials Science & Technology, 1999, 8(1): 8-13 (in Chinese). [54] SHIRANI S, CUESTA A, MORALES-CANTERO A, et al. Influence of curing temperature on belite cement hydration: a comparative study with Portland cement[J]. Cement and Concrete Research, 2021, 147: 106499. [55] MORALES-CANTERO A, DE LA TORRE A G, CUESTA A, et al. Belite hydration at high temperature and pressure by in situ synchrotron powder diffraction[J]. Construction and Building Materials, 2020, 262: 120825. [56] 郭传科, 王 毅, 任 超, 等. 白鹤滩大坝中热与低热水泥混凝土温控对比分析[J]. 水利水电快报, 2018, 39(8): 45-48. GUO C K, WANG Y, REN C, et al. Comparative analysis of temperature control of medium-heat and low-heat cement concrete in Baitan Dam[J]. Express Water Resources & Hydropower Information, 2018, 39(8): 45-48 (in Chinese). [57] WANG L, YANG H Q, DONG Y, et al. Environmental evaluation, hydration, pore structure, volume deformation and abrasion resistance of low heat Portland (LHP) cement-based materials[J]. Journal of Cleaner Production, 2018, 203: 540-558. [58] 王鹏飞, 刘有志, 樊亦林, 等. 低热水泥混凝土在特高拱坝中应用的可行性分析[J]. 水利水电技术, 2018, 49(9): 191-198. WANG P F, LIU Y Z, FAN Y L, et al. Analysis on feasibility of application of low-heat cement concrete to construction of ultra-high arch dam[J]. Water Resources and Hydropower Engineering, 2018, 49(9): 191-198 (in Chinese). [59] 杨长辉, 王 川, 吴 芳. 混凝土塑性收缩裂缝成因及防裂措施研究综述[J]. 混凝土, 2002(5): 33-36+25. YANG C H, WANG C, WU F. A survey on the causes of formation of plastic shrinkage cracking and the investigations of prtective measures in concrete[J]. Concrete, 2002(5): 33-36+25 (in Chinese). [60] 林 鹏, 李 明, 刘 科, 等. 低热水泥碾压混凝土坝适应性智能通水策略研究[J]. 水利学报, 2022, 53(9): 1028-1038. LIN P, LI M, LIU K, et al. Study on adaptive intelligent water supply strategy of low heat RCC dam[J]. Journal of Hydraulic Engineering, 2022, 53(9): 1028-1038 (in Chinese). [61] 樊启祥, 张超然, 陈文斌, 等. 乌东德及白鹤滩特高拱坝智能建造关键技术[J]. 水力发电学报, 2019, 38(2): 22-35. FAN Q X, ZHANG C R, CHEN W B, et al. Key technologies of intelligent construction of Wudongde and Baihetan super high arch dams[J]. Journal of Hydroelectric Engineering, 2019, 38(2): 22-35 (in Chinese). [62] XIN J D, ZHANG G X, LIU Y, et al. Environmental impact and thermal cracking resistance of low heat cement (LHC) and moderate heat cement (MHC) concrete at early ages[J]. Journal of Building Engineering, 2020, 32: 101668. [63] 胡 昱, 牛旭婧, 杨 宁, 等. 低热水泥混凝土早期塑性开裂风险研究[J]. 混凝土, 2021(3): 19-22+26. HU Y, NIU X J, YANG N, et al. Study on the risk of early plastic cracking of low heat cement concrete[J]. Concrete, 2021(3): 19-22+26 (in Chinese). [64] 赵 平, 刘克忠, 隋同波, 等. 高贝利特水泥混凝土耐久性的评价[J]. 混凝土与水泥制品, 2000(6): 7-11. ZHAO P, LIU K Z, SUI T B, et al. Evaluation of durability for high belite cement concrete[J]. Chinal Concrete and Cement Products, 2000(6): 7-11 (in Chinese). [65] JIANG C M, JIANG L H, LI S X, et al. Impact of cation type and fly ash on deterioration process of high belite cement pastes exposed to sulfate attack[J]. Construction and Building Materials, 2021, 286: 122961. [66] WANG N, CHENG X, YANG Y. Seawater corrosion resistance of low heat Portland cement concrete[J]. Materials Science Forum, 2015, 814: 207-213. [67] HE Y J, LU L N, STRUBLE L J, et al. Effect of calcium-silicon ratio on microstructure and nanostructure of calcium silicate hydrate synthesized by reaction of fumed silica and calcium oxide at room temperature[J]. Materials and Structures, 2014, 47(1): 311-322. [68] JIANG C M, JIANG L H, TANG X J, et al. Impact of calcium leaching on mechanical and physical behaviors of high belite cement pastes[J]. Construction and Building Materials, 2021, 286: 122983. [69] 范 磊. 高贝利特水泥高性能混凝土的研究[D]. 北京: 中国建筑材料科学研究院, 2003: 35-37. FAN L. Study on the preparation of HPC using high belite cement[D]. Beijing: China Building Materials Academy, 2003: 35-37 (in Chinese). [70] 张金山, 姚 燕, 王 昕, 等. 不同氯盐溶液中钙矾石与氯离子结合的研究[J]. 建筑材料学报, 2022, 25(3): 314-319. ZHANG J S, YAO Y, WANG X, et al. Combination of ettringite and chloride ion in different chloride solutions[J]. Journal of Building Materials, 2022, 25(3): 314-319 (in Chinese). [71] 黄 文. 海洋工程用低热硅酸盐水泥的研究[D]. 北京: 中国建筑材料科学研究总院, 2018: 23-25. HUANG W. Research of low heat Portland cement for marine engineering[D]. Beijing: China Building Materials Academy, 2018: 23-25 (in Chinese). [72] MATSUZAWA K, SHINSUGI M, ATARASHI D, et al. Hydration reaction and hydrated products of low heat Portland cement-expansive additive-CaO·2Al2O3 system with/without CaCl2[J]. Journal of the Ceramic Society of Japan, 2018, 126(5): 389-393. [73] SEO J, KIM S, JANG D, et al. Internal carbonation of belite-rich Portland cement: an in-depth observation at the interaction of the belite phase with sodium bicarbonate[J]. Journal of Building Engineering, 2021, 44: 102907. [74] HAUSMANN D A. A probability model of steel corrosion in concrete[J]. Materials Performance, 1998, 37(10): 64-68. [75] 濮 琦, 姚 燕, 王 玲, 等. 碳化混凝土中不同深度处pH值变化规律研究[J]. 新型建筑材料, 2017, 44(1): 1-4+33. PU Q, YAO Y, WANG L, et al. An investigation of the pH variation in carbonated concrete under different depth[J]. New Building Materials, 2017, 44(1): 1-4+33 (in Chinese). |
[1] | 王洪镇, 沈昊, 曹万智, 甘季中, 李文琦, 王海瑞, 褚文斌. 硼酸对硫铝酸盐基复合胶凝材料性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1166-1173. |
[2] | 梁锐, 孔森, 张琰, 刘佳龙. 梳状纳米二氧化硅分散液的制备及对水泥基材料性能的提升[J]. 硅酸盐通报, 2023, 42(4): 1183-1193. |
[3] | 姜晓丹, 孙梦琪, 刘昂, 王攀, 侯东帅. 碳化对环氧树脂与混凝土界面黏结性能影响的分子模拟研究[J]. 硅酸盐通报, 2023, 42(4): 1291-1297. |
[4] | 王杰, 王勇, 王宇强, 王彩萍, 叶圣茂, 高鹏. 循环流化床燃煤固硫灰的CBR特性及膨胀机理研究[J]. 硅酸盐通报, 2023, 42(4): 1323-1332. |
[5] | 张先伟, 高永红, 王平, 李江山, 刘世宇, 郎雷, 雷学文. 电解锰渣-生活垃圾焚烧底渣协同制备路面基层材料试验研究[J]. 硅酸盐通报, 2023, 42(4): 1363-1373. |
[6] | 黄利祥, 刘泽, 原航, 王栋民, 危鹏, 姜宏健. 赤泥-石膏复合激发蒸压加气混凝土的制备与性能研究[J]. 硅酸盐通报, 2023, 42(4): 1393-1399. |
[7] | 陈俊松, 乔敏, 吴庆勇, 李贞, 赵爽. 不同化学激发剂对再生微粉活性的影响及机理研究[J]. 硅酸盐通报, 2023, 42(4): 1409-1417. |
[8] | 李相国, 张乘, 吕阳, 李树国, 田博, 张成龙, 柯凯. 陶瓷抛光废料制备UHPC的耐久性能试验研究[J]. 硅酸盐通报, 2023, 42(4): 1418-1427. |
[9] | 杜晓伟, 刘辉, 李文举, 曹楷. 掺加热活化油页岩半焦混凝土的耐久性[J]. 硅酸盐通报, 2023, 42(4): 1428-1436. |
[10] | 李忠华, 颜正国, 杨文刚, 郑岐, 于景坤, 袁磊. CaO-Y2O3复合材料的制备及性能研究[J]. 硅酸盐通报, 2023, 42(4): 1506-1512. |
[11] | 刘志, 任子杰, 高惠民, 王康, 宋昱晗, 管俊芳. 不同硅质原料水热合成水化硅酸钙物相及其反应效率的研究[J]. 硅酸盐通报, 2023, 42(3): 854-860. |
[12] | 朱振中, 刘元珍, 王文婧, 王鲜星, 段鹏飞. 玄武岩纤维陶粒混凝土抗裂性能与热工性能试验研究[J]. 硅酸盐通报, 2023, 42(3): 908-916. |
[13] | 房延凤, 王凇宁, 佟钰, 孙小巍, 丁向群, 苏文. 碳酸化预处理对钢渣-水泥复合胶凝材料体积安定性及水化活性的影响[J]. 硅酸盐通报, 2023, 42(3): 1001-1007. |
[14] | 叶飞, 师文杰, 吴博, 谭高明, 马雪. 硼砂/三乙醇胺复合缓凝剂对磷酸钾镁水泥水化硬化性能的影响[J]. 硅酸盐通报, 2023, 42(2): 403-410. |
[15] | 邓懋, 申波, 吴洪梅, 陈松, 黄先桃, 谢青青. 石灰石粉含量和粒径对水泥水化热的影响[J]. 硅酸盐通报, 2023, 42(2): 420-428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||