[1] 王 恰. 2020—2060年中国风电装机规模及其CO2减排预测[J]. 生态经济, 2021, 37(7): 13-21. WANG Q. Forecast of China’s wind power installed capacity and corresponding CO2 reduction from 2020 to 2060[J]. Ecological Economy, 2021, 37(7): 13-21 (in Chinese). [2] 李丽旻. 叶片回收难题考验风电行业[N]. 中国能源报, 2020-03-30. LI L M. Blade recycling problem tests wind power industry[N]. China Energy News, 2020-03-30 (in Chinese). [3] LIU P, MENG F R, BARLOW C Y. Wind turbine blade end-of-life options: an economic comparison[J]. Resources, Conservation and Recycling, 2022, 180: 106202. [4] 封孝信, 白 龙, 贾 援, 等. 玻璃钢废弃物在水泥基材料中的应用研究进展[J]. 新型建筑材料, 2022, 49(4): 66-72. FENG X X, BAI L, JIA Y, et al. Research progress of application of waste fiber reinforced plastic in cementitious materials[J]. New Building Materials, 2022, 49(4): 66-72 (in Chinese). [5] 许淳瑶, 葛立超, 冯红翠, 等. 风力发电现状及叶片组成与回收利用综述[J]. 热力发电, 2022, 51(9): 29-41. XU C Y, GE L C, FENG H C, et al. Review on status of wind power generation and composition and recycling of wind turbine blades[J]. Thermal Power Generation, 2022, 51(9): 29-41 (in Chinese). [6] SHUAIB N A, MATIVENGA P T. Energy demand in mechanical recycling of glass fibre reinforced thermoset plastic composites[J]. Journal of Cleaner Production, 2016, 120: 198-206. [7] RAMIREZ-TEJEDA K, TURCOTTE D A, PIKE S. Unsustainable wind turbine blade disposal practices in the United States[J]. NEW SOLUTIONS: A Journal of Environmental and Occupational Health Policy, 2017, 26(4): 581-598. [8] FONTE R, XYDIS G. Wind turbine blade recycling: an evaluation of the European market potential for recycled composite materials[J]. Journal of Environmental Management, 2021, 287: 112269. [9] MISHNAEVSKY L. Sustainable end-of-life management of wind turbine blades: overview of current and coming solutions[J]. Materials, 2021, 14(5): 1124. [10] DEENEY P, NAGLE A J, GOUGH F, et al. End-of-Life alternatives for wind turbine blades: sustainability Indices based on the UN sustainable development goals[J]. Resources, Conservation and Recycling, 2021, 171: 105642. [11] PICKERING S J. Recycling technologies for thermoset composite materials—current status[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(8): 1206-1215. [12] PIÑERO-HERNANZ R, DODDS C, HYDE J, et al. Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(3): 454-461. [13] ARTURI K R, SOKOLI H U, SØGAARD E G, et al. Recovery of value-added chemicals by solvolysis of unsaturated polyester resin[J]. Journal of Cleaner Production, 2018, 170: 131-136. [14] SAKELLARIOU N. Current and potential decommissioning scenarios for end-of-life composite wind blades[J]. Energy Systems, 2018, 9(4): 981-1023. [15] 刘胜强, 贺 升, 周益辉, 等. 风电叶片废弃物回收技术综述[J]. 中国资源综合利用, 2021, 39(11): 109-111. LIU S Q, HE S, ZHOU Y H, et al. Overview of wind turbine blade waste recovery technology[J]. China Resources Comprehensive Utilization, 2021, 39(11): 109-111 (in Chinese). [16] RAJABIPOUR F, MARAGHECHI H, FISCHER G. Investigating the alkali-silica reaction of recycled glass aggregates in concrete materials[J]. Journal of Materials in Civil Engineering, 2010, 22(12): 1201-1208. [17] ASTM C1260, Standard test method for potential alkali reactivity of aggregates (mortar-bar method)[S]. American Society for Testing Material (ASTM) International: West Conshohocken, PA, USA, 2007. [18] TITTARELLI F, MORICONI G. Use of GRP industrial by-products in cement based composites[J]. Cement and Concrete Composites, 2010, 32(3): 219-225. [19] TITTARELLI F, SHAH S P. Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: part 1[J]. Construction and Building Materials, 2013, 47: 1532-1538. [20] RIBEIRO M C S, FIÚZA A, CASTRO A C M, et al. Mix design process of polyester polymer mortars modified with recycled GFRP waste materials[J]. Composite Structures, 2013, 105: 300-310. [21] FENG Y C, ZHAO F Q. Research on waste FRP fiber reinforced adhesive mortar[J]. IOP Conference Series: Materials Science and Engineering, 2017, 167: 012056. [22] 彭龙贵. 一种抗裂抹面砂浆及其制备方法: CN110482893B[P]. 2022-03-22. PENG L G. An anti-crack coating mortar and its preparation method: CN110482893B[P]. 2022-03-22 (in Chinese). [23] 彭龙贵. 一种抗裂石膏及其制备方法: CN110436872A[P]. 2022-03-22. PENG L G. An anti-cracking gypsum and its preparation method: CN110436872A[P]. 2022-03-22 (in Chinese). [24] 彭龙贵. 一种抗裂腻子及其制备方法: CN110408257A[P]. 2022-03-22. PENG L G. An anti-cracking putty and a preparation method thereof: CN110408257A[P]. 2022-03-22 (in Chinese). [25] FENG Y C, ZHAO F Q, XU H. Recycling and utilization of waste glass fiber reinforced plastics[J]. MATEC Web of Conferences, 2016, 67: 07012. [26] 冯艳超. 废玻璃钢纤维增强粘结砂浆的研究[D]. 石家庄: 河北科技大学, 2018: 15-30. FENG Y C. Study on waste FRP fiber reinforced bonding mortar[D]. Shijiazhuang: Hebei University of Science and Technology, 2018: 15-30 (in Chinese). [27] ZHOU Y W, WENG Y T, LI L M, et al. Recycled GFRP aggregate concrete considering aggregate grading: compressive behavior and stress-strain modeling[J]. Polymers, 2022, 14(3): 581. [28] YAZDANBAKHSH A, BANK L C, RIEDER K A, et al. Concrete with discrete slender elements from mechanically recycled wind turbine blades[J]. Resources, Conservation and Recycling, 2018, 128: 11-21. [29] BATURKIN D, HISSEINE O A, MASMOUDI R, et al. Valorization of recycled FRP materials from wind turbine blades in concrete[J]. Resources, Conservation and Recycling, 2021, 174: 105807. [30] ASOKAN P, OSMANI M, PRICE A. Improvement of the mechanical properties of glass fibre reinforced plastic waste powder filled concrete[J]. Construction and Building Materials, 2010, 24(4): 448-460. [31] CORREIA J R, ALMEIDA N M, FIGUEIRA J R. Recycling of FRP composites: reusing fine GFRP waste in concrete mixtures[J]. Journal of Cleaner Production, 2011, 19(15): 1745-1753. [32] SEBAIBI N, BENZERZOUR M, ABRIAK N E, et al. Mechanical properties of concrete-reinforced fibres and powders with crushed thermoset composites: the influence of fibre/matrix interaction[J]. Construction and Building Materials, 2012, 29: 332-338. [33] GARCÍA D, VEGAS I, CACHO I. Mechanical recycling of GFRP waste as short-fiber reinforcements in microconcrete[J]. Construction and Building Materials, 2014, 64: 293-300. [34] 腾银见. 玻璃钢再生纤维及粉末对活性粉末混凝土性能的影响研究[D]. 绵阳: 西南科技大学, 2020: 22-32. TENG Y J. Study on the influence of recycled FRP fiber and powder on the properties of reactive powder concrete[D]. Mianyang: Southwest University of Science and Technology, 2020: 22-32 (in Chinese). [35] HALBERD J, HOUSTON D. Natural-fibre-reinforced polymer composites in automotive applications: low-cost composites in vehicle manufacture[J]. JOM, 2006: 80-86. [36] MONTEIRO S N, LOPES F P D, FERREIRA A S, et al. Natural-fiber polymer-matrix composites: cheaper, tougher, and environmentally friendly[J]. JOM, 2009, 61(1): 17-22. [37] 王海刚, 张京发, 王伟宏, 等. 纤维增强木塑复合材料研究进展[J]. 林业科学, 2016, 52(6): 130-139. WANG H G, ZHANG J F, WANG W H, et al. Research of fiber reinforced wood-plastic composites: a review[J]. Scientia Silvae Sinicae, 2016, 52(6): 130-139 (in Chinese). [38] JEAMTRAKULL S, KOSITCHAIYONG A, MARKPIN T, et al. Effects of wood constituents and content, and glass fiber reinforcement on wear behavior of wood/PVC composites[J]. Composites Part B: Engineering, 2012, 43(7): 2721-2729. [39] 崔益华, BAHMAN N, STEPHEN L, 等. 玻璃纤维/木塑混杂复合材料及其协同增强效应[J]. 高分子材料科学与工程, 2006, 22(3): 231-234. CUI Y H, BAHMAN N, STEPHEN L, et al. Glass fiber/wood plastic hybrid composites and their synergistic reinforcing effects[J]. Polymer Materials Science & Engineering, 2006, 22(3): 231-234 (in Chinese). [40] 吴建军. 利用FRP废弃物与秸秆纤维制备木塑复合材料的工艺及性能研究[D]. 济南: 济南大学, 2015: 41-55. WU J J. Study on the technology and properties of wood-plastic composites prepared from FRP waste and straw fiber[D]. Jinan: University of Jinan, 2015: 41-55 (in Chinese). [41] 滕朝阳. FRP废渣/秸秆纤维木塑复合材料的制备与研究[D]. 济南: 济南大学, 2016: 27-39. TENG Z Y. Preparation and study of FRP waste residue/straw fiber wood-plastic composites[D]. Jinan: University of Jinan, 2016: 27-39 (in Chinese). [42] YALINKILIC M K, GEZER E D, TAKAHASHI M, et al. Boron addition to non- or low-formaldehyde cross-linking reagents to enhance biological resistance and dimensional stability of wood[J]. Holz Als Roh- Und Werkstoff, 1999, 57(5): 351-357. [43] 张 兴. 木塑复合材料界面改性及阻燃机理的研究[D]. 北京: 北京化工大学, 2016: 15-30. ZHANG X. Study on interfacial modification and flame retardant mechanism of wood-plastic composites[D]. Beijing: Beijing University of Chemical Technology, 2016: 15-30 (in Chinese). [44] DORIEH A, SELAKJANI P P, SHAHAVI M H, et al. Recent developments in the performance of micro/nanoparticle-modified urea-formaldehyde resins used as wood-based composite binders: a review[J]. International Journal of Adhesion and Adhesives, 2022, 114: 103106. [45] MATKÓ S, TOLDY A, KESZEI S, et al. Flame retardancy of biodegradable polymers and biocomposites[J]. Polymer Degradation and Stability, 2005, 88(1): 138-145. [46] GARCÍA M, HIDALGO J, GARMENDIA I, et al. Wood-plastics composites with better fire retardancy and durability performance[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(11): 1772-1776. [47] BORYSIAK S, PAUKSZTA D, HELWIG M. Flammability of wood-polypropylene composites[J]. Polymer Degradation and Stability, 2006, 91(12): 3339-3343. [48] 张素风, 刘 媛, 修慧娟. 废弃玻璃钢填充聚丙烯复合材料的性能研究[J]. 热固性树脂, 2017, 32(1): 50-54. ZHANG S F, LIU Y, XIU H J. Study on the properties of PP matrix composites filled with the waste glass fiber reinforced plastics[J]. Thermosetting Resin, 2017, 32(1): 50-54 (in Chinese). [49] 张素风, 刘 媛, 修慧娟. 改性剂对废弃玻璃钢/聚丙烯复合材料性能的影响[J]. 玻璃钢/复合材料, 2017(7): 77-81. ZHANG S F, LIU Y, XIU H J. Effects of modifier on mechanical properties of WGFRP/PP composites[J]. Fiber Reinforced Plastics/Composites, 2017(7): 77-81 (in Chinese). [50] KENNERLEY J R, KELLY R M, FENWICK N J, et al. The characterisation and reuse of glass fibres recycled from scrap composites by the action of a fluidised bed process[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(7): 839-845. [51] CUNLIFFE A M, WILLIAMS P T. Characterisation of products from the recycling of glass fibre reinforced polyester waste by pyrolysis[J]. Fuel, 2003, 82(18): 2223-2230. [52] JOB S. Composite Recycling-summary of recent research and development[J]. Materials KTN Reports, 2010: 26. [53] FILIP P, WEISS Z, RAFAJA D. On friction layer formation in polymer matrix composite materials for brake applications[J]. Wear, 2002, 252(3/4): 189-198. [54] RIBEIRO M C S, MEIRA-CASTRO A C, SILVA F G, et al. Re-use assessment of thermoset composite wastes as aggregate and filler replacement for concrete-polymer composite materials: a case study regarding GFRP pultrusion wastes[J]. Resources, Conservation and Recycling, 2015, 104: 417-426. [55] 叶林忠. 废玻璃钢粉填充丁腈橡胶的性能研究[J]. 再生资源与循环经济, 2009, 2(11): 39-41. YE L Z. Properties of NBR vulcanizates filled with waste FRP powder[J]. Renewable Resources and Recycling Economy, 2009, 2(11): 39-41 (in Chinese). [56] PALMER J, GHITA O R, SAVAGE L, et al. Successful closed-loop recycling of thermoset composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(4): 490-498. [57] RAHIMIZADEH A, KALMAN J, FAYAZBAKHSH K, et al. Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing[J]. Composites Part B: Engineering, 2019, 175: 107101. [58] MOSLEHI A, AJJI A, HEUZEY M C, et al. Polylactic acid/recycled wind turbine glass fiber composites with enhanced mechanical properties and toughness[J]. Journal of Applied Polymer Science, 2022, 139(15): 51934. [59] RAHIMIZADEH A, TAHIR M, FAYAZBAKHSH K, et al. Tensile properties and interfacial shear strength of recycled fibers from wind turbine waste[J]. Composites Part A: Applied Science and Manufacturing, 2020, 131: 105786. |