[1] 汪 凯, 燕远岭, 赵 哲, 等. 界面过渡区与骨料特征对混凝土强度及变形影响的数值模拟研究[J]. 硅酸盐通报, 2023, 42(4): 1298-1308+1322. WANG K, YAN Y L, ZHAO Z, et al. Numerical simulation study on effects of interface transition zone and aggregate characteristics on strength and deformation of concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1298-1308+1322 (in Chinese). [2] 金 浏, 李 健, 余文轩, 等. 考虑骨料粒径影响的混凝土拉伸强度尺寸效应律[J]. 北京工业大学学报, 2021, 47(4): 311-320. JIN L, LI J, YU W X, et al. Size effect law of concrete tensile strength considering the influence of aggregate size[J]. Journal of Beijing University of Technology, 2021, 47(4): 311-320 (in Chinese). [3] SHEN Q Z, PAN G H, ZHAN H G. Effect of interfacial transition zone on the carbonation of cement-based materials[J]. Journal of Materials in Civil Engineering, 2017, 29(7): 1-9. [4] SANTOS A R, VEIGA M, SANTOS SILVA A, et al. Microstructure as a critical factor of cement mortars' behaviour: the effect of aggregates’ properties[J]. Cement & Concrete Composites, 2020, 111: 103628. [5] LYU K, GARBOCZI E J, GAO Y F, et al. Relationship between fine aggregate size and the air void system of six mortars: I. Air void content and diameter distribution[J]. Cement and Concrete Composites, 2022, 131: 104599. [6] JIANG Z L, HUANG Q H, XI Y P, et al. Experimental study of diffusivity of the interfacial transition zone between cement paste and aggregate[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 1-8. [7] COSTA A. Permeability-porosity relationship: a reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption[J]. Geophysical Research Letters, 2006, 33(2): L02318. [8] NING L, ZHAO Y, BI J, et al. Effect of aggregate size on water distribution and pore fractal characteristics during hydration of cement mortar based on low-field NMR technology[J]. Construction and Building Materials, 2023, 389: 131670. [9] 王江波, 丁俊升, 王晓东, 等. 粗骨料粒径对混凝土动态压缩行为的影响研究[J]. 爆炸与冲击, 2022, 42(2): 31-41. WANG J B, DING J S, WANG X D, et al. Effect of coarse aggregate size on the dynamic compression behavior of concrete[J]. Explosion and Shock Waves, 2022, 42(2): 31-41 (in Chinese). [10] 杜 敏, 陈凡红, 王素莉. 骨料粒径对混凝土劈裂抗拉强度尺寸效应影响的试验研究[J]. 建筑结构, 2022, 52(13): 128-132+127. DU M, CHEN F H, WANG S L. Experimental study on the effect of aggregate size on the size effect of concrete splitting tensile strength[J]. Building Structure, 2022, 52(13): 128-132+127 (in Chinese). [11] 苏 捷, 史才军, 黄泽恩, 等. 粗骨料含量对超高性能混凝土抗压强度尺寸效应的影响[J]. 硅酸盐学报, 2021, 49(11): 2416-2422. SU J, SHI C J, HUANG Z E, et al. Scale effect on cubic compressive strength on ultra-high performance concrete containing coarse aggregate[J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2416-2422 (in Chinese). [12] YAN P, ZHANG J H, FANG Q, et al. 3D numerical modelling of solid particles with randomness in shape considering convexity and concavity[J]. Powder Technology, 2016, 301: 131-140. [13] CHEN C H, BAI S L, HUANG Y, et al. 3D random packing algorithm of ellipsoidal particles based on the Monte Carlo method[J]. Magazine of Concrete Research, 2021, 73(7): 343-355. [14] WANG S F, ZHAI X L, GAO Y Y, et al. Establishment and application of stochastic mesoscopic concrete model[J]. Advances in Civil Engineering, 2022, 2022: 1-17. [15] YAVUZ D, YAZICI Š, AVCI M S, et al. A novel approach to estimate the tortuosity of pervious concretes using computed tomography[J]. Materials and Structures, 2023, 56(4): 74. [16] ZHANG Y, WU K, YANG Z X, et al. A reappraisal of the ink-bottle effect and pore structure of cementitious materials using intrusion-extrusion cyclic mercury porosimetry[J]. Cement and Concrete Research, 2022, 161: 106942. [17] ZHI F F, JIANG Y, GUO M Z, et al. Effect of polyacrylamide on the carbonation behavior of cement paste[J]. Cement and Concrete Research, 2022, 156: 106756. [18] MOHAN M K, RAHUL A V, VAN STAPPEN J F, et al. Assessment of pore structure characteristics and tortuosity of 3D printed concrete using mercury intrusion porosimetry and X-ray tomography[J]. Cement and Concrete Composites, 2023, 140: 105104. [19] WENZEL O, SCHWOTZER M, MÜLLER E, et al. Investigating the pore structure of the calcium silicate hydrate phase[J]. Materials Characterization, 2017, 133: 133-137. [20] 郝 坤, 宁 麟, 郭鸿雁, 等. 基于低场核磁共振技术高温水泥砂浆局部热损伤的研究[J]. 硅酸盐通报, 2022, 41(12): 4163-4171. HAO K, NING L, GUO H Y, et al. Research on local thermal damage of high temperature cement mortar based on low field nuclear magnetic resonance[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4163-4171 (in Chinese). [21] 唐进才, 宁 麟, 张 增, 等. 基于低场核磁共振技术水泥砂浆反复高温热损伤的研究[J]. 硅酸盐通报, 2022, 41(10): 3403-3412. TANG J C, NING L, ZHANG Z, et al. Repeated high temperature thermal damage of cement mortar based on low field nuclear magnetic resonance technology[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3403-3412 (in Chinese). [22] 何娅兰, 宁 麟, 李 炀, 等. 基于核磁共振技术对水泥砂浆高温后孔隙结构及水分迁移特征的研究[J]. 硅酸盐通报, 2023, 42(7): 2336-2343. HE Y L, NING L, LI Y, et al. Study on pore structure and water migration characteristics of cement mortar after high temperature based on NMR technology[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2336-2343 (in Chinese). [23] ZHAO H T, QIN X, LIU J P, et al. Pore structure characterization of early-age cement pastes blended with high-volume fly ash[J]. Construction and Building Materials, 2018, 189: 934-946. [24] ZHAO H T, DING J A, HUANG Y Y, et al. Experimental analysis on the relationship between pore structure and capillary water absorption characteristics of cement-based materials[J]. Structural Concrete, 2019, 20(5): 1750-1762. [25] LAN X L, ZENG X H, ZHU H S, et al. Experimental investigation on fractal characteristics of pores in air-entrained concrete at low atmospheric pressure[J]. Cement and Concrete Composites, 2022, 130: 104509. [26] 古启雄, 黄 震, 钟 文, 等. 高温循环后花岗岩孔隙结构与物理力学特性演化规律研究[J]. 岩石力学与工程学报, 2023, 42(6): 1450-1465. GU Q X, HUANG Z, ZHONG W, et al. Study on the variations of pore structure and physico-mechanical properties of granite after high temperature cycling[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(6): 1450-1465 (in Chinese). [27] BRACE W F, WALSH J B, FRANGOS W T. Permeability of granite under high pressure[J]. Journal of Geophysical Research, 1968, 73(6): 2225-2236. [28] FENG R M. An optimized transient technique and flow modeling for laboratory permeability measurements of unconventional gas reservoirs with tight structure[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 603-614. [29] KONTOGEORGOS D A, FOUNTI M A. A generalized methodology for the definition of reactive porous materials physical properties: prediction of gypsum board properties[J]. Construction and Building Materials, 2013, 48: 804-813. [30] ZHAO H T, WU X A, HUANG Y Y, et al. Investigation of moisture transport in cement-based materials using low-field nuclear magnetic resonance imaging[J]. Magazine of Concrete Research, 2021, 73(5): 252-270. |