硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (12): 4183-4196.
• 水泥混凝土 • 下一篇
陈春红1,2, 陈云春1, 王磊1, 俞江1, 朱平华1, 李海朝1, 徐凌杰1, 王辞鉴1, 乔森3
收稿日期:
2023-07-27
修订日期:
2023-09-18
出版日期:
2023-12-15
发布日期:
2023-12-12
作者简介:
陈春红(1983—),女,博士,副教授。主要从事再生骨料及再生混凝土耐久性的研究。E-mail:chench@cczu.edu.cn
基金资助:
CHEN Chunhong1,2, CHEN Yunchun1, WANG Lei1, YU Jiang1, ZHU Pinghua1, LI Haichao1, XU Lingjie1, WANG Cijian1, QIAO Sen3
Received:
2023-07-27
Revised:
2023-09-18
Online:
2023-12-15
Published:
2023-12-12
摘要: 将建筑固废破碎成再生骨料加以使用,既可节约自然砂石资源,又可促进建筑固废循环利用。再生骨料的品质决定了再生混凝土的性能,而品质的影响因素很多,其中母体混凝土的强度是重要的影响因素之一。本文以母体混凝土强度为研究对象,综述其对再生骨料及再生骨料混凝土的性能影响规律。不同强度的母体混凝土通过影响再生骨料黏附砂浆的质量与含量,进而影响再生骨料及再生骨料混凝土的性能。母体混凝土强度增加,黏附砂浆的质量与含量均得到提高;而黏附砂浆质量的提高强化了再生骨料和再生骨料混凝土的性能;黏附砂浆含量的增加劣化了再生骨料的物理性能,使再生骨料孔隙率和吸水率增加,却强化了混凝土的内养护效果,有助于提升再生骨料混凝土的力学性能。微观分析发现,对于不同强度的母体混凝土,再生骨料混凝土界面过渡区中水化产物的含量有差异,从而对混凝土的力学性能产生影响。本文为再生骨料的进一步分级利用提供参考。
中图分类号:
陈春红, 陈云春, 王磊, 俞江, 朱平华, 李海朝, 徐凌杰, 王辞鉴, 乔森. 母体混凝土强度对再生骨料及再生骨料混凝土性能影响研究进展[J]. 硅酸盐通报, 2023, 42(12): 4183-4196.
CHEN Chunhong, CHEN Yunchun, WANG Lei, YU Jiang, ZHU Pinghua, LI Haichao, XU Lingjie, WANG Cijian, QIAO Sen. Research Progress on Influence of Parent Concrete Strength on Properties of Recycled Aggregate and Recycled Aggregate Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(12): 4183-4196.
[1] KIM J. Construction and demolition waste management in Korea: recycled aggregate and its application[J]. Clean Technologies and Environmental Policy, 2021, 23(8): 2223-2234. [2] HOANG N H, ISHIGAKI T, KUBOTA R, et al. Waste generation, composition, and handling in building-related construction and demolition in Hanoi, Vietnam[J]. Waste Management, 2020, 117: 32-41. [3] LV H, LI Y S, YAN H B, et al. Examining construction waste management policies in mainland China for potential performance improvements[J]. Clean Technologies and Environmental Policy, 2021, 23(2): 445-462. [4] KIM M J, LEE S J, KIM H R. Radiological safety evaluation of a recycling facility for dismantled concrete waste[J]. Progress in Nuclear Energy, 2023, 157: 104574. [5] 王春晖, 肖建庄. 再生细骨料混凝土材料性能与结构行为研究评述[J]. 土木工程学报, 2022, 55(5): 37-53. WANG C H, XIAO J Z. Material properties and structural behaviors of recycled fine aggregate concrete: an overview[J]. China Civil Engineering Journal, 2022, 55(5): 37-53 (in Chinese). [6] PENG X, SHI F T, YANG J N, et al. Modification of construction waste derived recycled aggregate via CO2 curing to enhance corrosive freeze-thaw durability of concrete[J]. Journal of Cleaner Production, 2023, 405: 137016. [7] ZHANG L G, SOJOBI A, KODUR V, et al. Effective utilization and recycling of mixed recycled aggregates for a greener environment[J]. Journal of Cleaner Production, 2019, 236: 117600. [8] GRABIEC A M, ZAWAL D, RASAQ W A. The effect of curing conditions on selected properties of recycled aggregate concrete[J]. Applied Sciences, 2020, 10(13): 4441. [9] AL-AJMANI H, SULEIMAN F, ABUZAYED I, et al. Evaluation of concrete strength made with recycled aggregate[J]. Buildings, 2019, 9(3): 56. [10] VIEIRA G L, SCHIAVON J Z, BORGES P M, et al. Influence of recycled aggregate replacement and fly ash content in performance of pervious concrete mixtures[J]. Journal of Cleaner Production, 2020, 271: 122665. [11] TABSH S W, ABDELFATAH A S. Influence of recycled concrete aggregates on strength properties of concrete[J]. Construction and Building Materials, 2009, 23(2): 1163-1167. [12] SILVA R V, DE BRITO J, DHIR R K. Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete[J]. Journal of Cleaner Production, 2016, 112: 2171-2186. [13] ZHANG H, WANG Y Y, LEHMAN D, et al. Time-dependent drying shrinkage model for concrete with coarse and fine recycled aggregate[J]. Cement & Concrete Composites, 2020, 105: 103426. [14] SILVA R V, DE BRITO J, DHIR R K. Comparative analysis of existing prediction models on the creep behaviour of recycled aggregate concrete[J]. Engineering Structures, 2015, 100: 31-42. [15] FAN Y H, XIAO J Z, TAM V W Y. Effect of old attached mortar on the creep of recycled aggregate concrete[J]. Structural Concrete, 2014, 15(2): 169-178. [16] DE-BRITO J, KURDA R, RAPOSEIRO D S P. Can we truly predict the compressive strength of concrete without knowing the properties of aggregates?[J]. Applied Sciences, 2018, 8(7): 1095. [17] KATZ A. Properties of concrete made with recycled aggregate from partially hydrated old concrete[J]. Cement and Concrete Research, 2003, 33(5): 703-711. [18] GHOLAMPOUR A, OZBAKKALOGLU T. Time-dependent and long-term mechanical properties of concretes incorporating different grades of coarse recycled concrete aggregates[J]. Engineering Structures, 2018, 157: 224-234. [19] DUAN Z H, HAN N, SINGH A, et al. Multi-scale investigation on concrete prepared with recycled aggregates from different parent concrete[J]. Journal of Renewable Materials, 2020, 8(11): 1375-1390. [20] AKBARNEZHAD A, ONG K C G, TAM C T, et al. Effects of the parent concrete properties and crushing procedure on the properties of coarse recycled concrete aggregates[J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1795-1802. [21] BONIFAZI G, PALMIERI R, SERRANTI S. Evaluation of attached mortar on recycled concrete aggregates by hyperspectral imaging[J]. Construction and Building Materials, 2018, 169: 835-842. [22] AKBARNEZHAD A, ONG K C G, ZHANG M H, et al. Microwave-assisted beneficiation of recycled concrete aggregates[J]. Construction and Building Materials, 2011, 25(8): 3469-3479. [23] KIM J. Influence of quality of recycled aggregates on the mechanical properties of recycled aggregate concretes: an overview[J]. Construction and Building Materials, 2022, 328: 127071. [24] LIU K H, YAN J C, HU Q, et al. Effects of parent concrete and mixing method on the resistance to freezing and thawing of air-entrained recycled aggregate concrete[J]. Construction and Building Materials, 2016, 106: 264-273. [25] HE Z H, HU H B, CASANOVA I, et al. Effect of shrinkage reducing admixture on creep of recycled aggregate concrete[J]. Construction and Building Materials, 2020, 254: 119312. [26] YING J W, HAN Z W, SHEN L M, et al. Influence of parent concrete properties on compressive strength and chloride diffusion coefficient of concrete with strengthened recycled aggregates[J]. Materials, 2020, 13(20): 4631. [27] ANDREU G, MIREN E. Experimental analysis of properties of high performance recycled aggregate concrete[J]. Construction and Building Materials, 2014, 52: 227-235. [28] CHISUN P. Effect of quality of parent concrete on the mechanical properties of high performance recycled aggregate concrete[J]. Journal of the Chinese Ceramic Society, 2012, 40(1): 7-11. [29] PEDRO D, DE-BRITO J, EVANGELISTA L. Influence of the use of recycled concrete aggregates from different sources on structural concrete[J]. Construction and Building Materials, 2014, 71: 141-151. [30] 王建刚, 曾 波, 唐 飞, 等. 不同类型再生细骨料混凝土力学性能对比研究[J]. 混凝土, 2022(4): 81-85. WANG J G, ZENG B, TANG F, et al. Comparative study on mechanical properties of concrete with different types of recycled fine aggregate[J]. Concrete, 2022(4): 81-85 (in Chinese). [31] KEBAILI B, BENZERARA M, MENADI S, et al. Effect of parent concrete strength on recycled concrete performance[J]. Frattura Ed Integrità Strutturale, 2022, 16(62): 14-25. [32] PADMINI A K, RAMAMURTHY K, MATHEWS M S. Influence of parent concrete on the properties of recycled aggregate concrete[J]. Construction and Building Materials, 2009, 23(2): 829-836. [33] RAO M C. Properties of recycled aggregate and recycled aggregate concrete: effect of parent concrete[J]. Asian Journal of Civil Engineering, 2018, 19(1): 103-110. [34] 秦拥军, 刘志刚, 于 江. 分类再生细骨料对建筑砂浆性能影响的试验研究[J]. 混凝土, 2014(11): 127-131. QIN Y J, LIU Z G, YU J. Classification recycled fine aggregate impact on the performance of building mortar experimental study[J]. Concrete, 2014(11): 127-131 (in Chinese). [35] FAN C C, HUANG R, HWANG H, et al. Properties of concrete incorporating fine recycled aggregates from crushed concrete wastes[J]. Construction and Building Materials, 2016, 112: 708-715. [36] NAGATAKI S, GOKCE A, SAEKI T, et al. Assessment of recycling process induced damage sensitivity of recycled concrete aggregates[J]. Cement and Concrete Research, 2004, 34(6): 965-971. [37] TAM V W Y. Comparing the implementation of concrete recycling in the Australian and Japanese construction industries[J]. Journal of Cleaner Production, 2009, 17(7): 688-702. [38] ULSEN C, KAHN H, HAWLITSCHEK G, et al. Production of recycled sand from construction and demolition waste[J]. Construction and Building Materials, 2013, 40: 1168-1173. [39] DE-BRITO J, FERREIRA J, PACHECO J, et al. Structural, material, mechanical and durability properties and behaviour of recycled aggregates concrete[J]. Journal of Building Engineering, 2016, 6: 1-16. [40] DUAN Z H, POON C S. Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars[J]. Materials & Design, 2014, 58: 19-29. [41] WANG R J, YU N N, LI Y. Methods for improving the microstructure of recycled concrete aggregate: a review[J]. Construction and Building Materials, 2020, 242: 118164. [42] SHI C J, LI Y K, ZHANG J K, et al. Performance enhancement of recycled concrete aggregate: a review[J]. Journal of Cleaner Production, 2016, 112: 466-472. [43] 徐亦冬, 周士琼, 肖 佳. 再生混凝土骨料试验研究[J]. 建筑材料学报, 2004, 7(4): 447-450. XU Y D, ZHOU S Q, XIAO J. Experimental study of recycled concrete aggregate[J]. Journal of Building Materials, 2004, 7(4): 447-450 (in Chinese). [44] RAO M C, BHATTACHARYYA S K, BARAI S V. Properties of recycled aggregate concrete[M]// Systematic Approach of Characterisation and Behaviour of Recycled Aggregate Concrete. Singapore: Springer, 2019: 83-157. [45] 李振兴, 秦拥军, 游 彪, 等. 不同原生混凝土再生细骨料性能试验研究[J]. 混凝土, 2014(4): 93-96. LI Z X, QIN Y J, YOU B, et al. Research on the properties of different parent recycled concrete fine aggregates[J]. Concrete, 2014(4): 93-96 (in Chinese). [46] GU X L, TRAN Y, HONG L. Quantification of coarse aggregate shape in concrete[J]. Frontiers of Structural and Civil Engineering, 2014, 8(3): 308-321. [47] JAMKAR S S, RAO C B K. Index of aggregate particle shape and texture of coarse aggregate as a parameter for concrete mix proportioning[J]. Cement and Concrete Research, 2004, 34(11): 2021-2027. [48] POLAT R, YADOLLAHI M M, SAGSOZ A E, et al. The correlation between aggregate shape and compressive strength of concrete: Digital image processing approach[J]. International Journal of Civil Engineering, 2013, 2(3): 63-80. [49] XIAO J Z, YING J W, SHEN L M. FEM simulation of chloride diffusion in modeled recycled aggregate concrete[J]. Construction and Building Materials, 2012, 29: 12-23. [50] WANG Y, PENG Y J, KAMEL M M A, et al. Mesomechanical properties of concrete with different shapes and replacement ratios of recycled aggregate based on base force element method[J]. Structural Concrete, 2019, 20(4): 1425-1437. [51] SAINZ-AJA J, CARRASCAL I, POLANCO J, et al. Aging of recycled aggregates mortars by drying-wetting cycles[J]. Construction and Building Materials, 2021, 307: 124934. [52] MWASHA A, RAMNATH R. Manufacturing concrete with high compressive strength using recycled aggregates[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018182. [53] KOU S C, POON C S. Effect of the quality of parent concrete on the properties of high performance recycled aggregate concrete[J]. Construction and Building Materials, 2015, 77: 501-508. [54] ZHAN P M, HE Z H. Application of shrinkage reducing admixture in concrete: a review[J]. Construction and Building Materials, 2019, 201: 676-690. [55] PANI L, FRANCESCONI L, ROMBI J, et al. Effect of parent concrete on the performance of recycled aggregate concrete[J]. Sustainability, 2020, 12(22): 9399. [56] KOU S C, POON C S, ETXEBERRIA M. Influence of recycled aggregates on long term mechanical properties and pore size distribution of concrete[J]. Cement and Concrete Composites, 2011, 33(2): 286-291. [57] STOCHINO F, PANI L, FRANCESCONI L, et al. Cracking of reinforced recycled concrete slabs[J]. International Journal of Structural Glass and Advanced Materials Research, 2017, 1(1): 3-9. [58] SUN C, CHEN Q Y, XIAO J Z, et al. Study on aggregate interlock behavior of pre-cracked recycled aggregate concrete without stirrups[J]. Journal of Building Engineering, 2021, 39: 102257. [59] LIU Q, XIAO J Z, SUN Z H. Experimental study on the failure mechanism of recycled concrete[J]. Cement and Concrete Research, 2011, 41(10): 1050-1057. [60] MARTÍN M M, ZAMORANO M, RUIZ M A, et al. Characterization of recycled aggregates construction and demolition waste for concrete production following the Spanish Structural Concrete Code EHE-08[J]. Construction and Building Materials, 2011, 25(2): 742-748. [61] 肖建庄, 杜江涛. 不同再生粗集料混凝土单轴受压应力-应变全曲线[J]. 建筑材料学报, 2008, 11(1): 111-115. XIAO J Z, DU J T. Complete stress-strain curve of concrete with different recycled coarse aggregates under uniaxial compression[J]. Journal of Building Materials, 2008, 11(1): 111-115 (in Chinese). [62] ZHANG J K, SHI C J, LI Y K, et al. Performance enhancement of recycled concrete aggregates through carbonation[J]. Journal of Materials in Civil Engineering, 2015, 27(11): 04015029. [63] LIAN C, ZHUGE Y, BEECHAM S. The relationship between porosity and strength for porous concrete[J]. Construction and Building Materials, 2011, 25(11): 4294-4298. [64] BRANCH J L, EPPS R, KOSSON D S. The impact of carbonation on bulk and ITZ porosity in microconcrete materials with fly ash replacement[J]. Cement and Concrete Research, 2018, 103: 170-178. [65] LI J S, XIAO H N, ZHOU Y. Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete[J]. Construction and Building Materials, 2009, 23(3): 1287-1291. [66] LI Y, ZHANG S, WANG R J, et al. Effects of carbonation treatment on the crushing characteristics of recycled coarse aggregates[J]. Construction and Building Materials, 2019, 201: 408-420. [67] YU Y, ZHENG Y, ZHAO X Y. Mesoscale modeling of recycled aggregate concrete under uniaxial compression and tension using discrete element method[J]. Construction and Building Materials, 2021, 268: 121116. [68] LIU J, MA K L, SHEN J T, et al. Influence of recycled concrete aggregate enhancement methods on the change of microstructure of ITZs in recycled aggregate concrete[J]. Construction and Building Materials, 2023, 371: 130772. [69] SUN D D, SHI H S, WU K, et al. Influence of aggregate surface treatment on corrosion resistance of cement composite under chloride attack[J]. Construction and Building Materials, 2020, 248: 118636. [70] XUE S B, ZHANG P, BAO J W, et al. Comparison of Mercury Intrusion Porosimetry and multi-scale X-ray CT on characterizing the microstructure of heat-treated cement mortar[J]. Materials Characterization, 2020, 160: 110085. [71] WANG B, YAN L B, FU Q N, et al. A comprehensive review on recycled aggregate and recycled aggregate concrete[J]. Resources, Conservation and Recycling, 2021, 171: 105565. [72] ASSAAD J J, MATAR P, GERGESS A. Effect of quality of recycled aggregates on bond strength between concrete and embedded steel reinforcement[J]. Journal of Sustainable Cement-Based Materials, 2020, 9(2): 94-111. [73] LI W G, XIAO J Z, SUN Z H, et al. Interfacial transition zones in recycled aggregate concrete with different mixing approaches[J]. Construction and Building Materials, 2012, 35: 1045-1055. [74] TAM V W Y, GAO X F, TAM C M, et al. Physio-chemical reactions in recycle aggregate concrete[J]. Journal of Hazardous Materials, 2009, 163(2/3): 823-828. [75] KANG S M, NA S H, LEE S H, et al. Effects of ettringite formation on the compressive strength of mortar during activation of blast-furnace slag without ordinary Portland cement[J]. Materials Research Innovations, 2015, 19(supplement 8): 545-548. [76] SIDOROVA A, VAZQUEZ R E, BARRA B M, et al. Study of the recycled aggregates nature’s influence on the aggregate-cement paste interface and ITZ[J]. Construction and Building Materials, 2014, 68: 677-684. [77] MEDINA C, ZHU W Z, HOWIND T, et al. Influence of interfacial transition zone on engineering properties of the concrete manufactured with recycled ceramic aggregate[J]. Journal of Civil Engineering and Management, 2014, 21(1): 83-93. |
[1] | 王宝, 谭旭, 吕文龙, 王怡, 周建安. 珠光砂添加量对矾土浇注料性能的影响[J]. 硅酸盐通报, 2023, 42(8): 2945-2951. |
[2] | 陈伟, 宋金源, 段平, 陈琴, 唐佩. 人造骨料表面改性改善混凝土界面过渡区性能研究[J]. 硅酸盐通报, 2023, 42(5): 1615-1622. |
[3] | 金珊珊, 李傲东, 张扬. 低碱再生骨料植生混凝土吸返水特性表征模型研究[J]. 硅酸盐通报, 2023, 42(5): 1814-1821. |
[4] | 王家燕, 董博, 余超, 邓承继, 丁军, 祝洪喜. 四元矿化剂对硅砖微观形貌及物理性能的影响[J]. 硅酸盐通报, 2023, 42(3): 1115-1121. |
[5] | 刘德嵩, 杨忠德, 林鑫, 谢虎, 张菡欣, 王开, 黄守武, 刘振英. 轻质氧化镁含量对方镁石-镁铝尖晶石砖性能的影响[J]. 硅酸盐通报, 2023, 42(3): 1122-1129. |
[6] | 王晨晨, 王学志, 陈东林, 贺晶晶. 基于正交试验的粉煤灰-硅锰渣再生混凝土力学性能研究[J]. 硅酸盐通报, 2022, 41(9): 3190-3201. |
[7] | 董博, 闵昌胜, 陈博, 邓承继, 谢哲, 杨千秋, 丁军, 祝洪喜, 杨昕雨, 余超. 陶瓷相结合粉煤灰漂珠轻质隔热材料的制备及性能研究[J]. 硅酸盐通报, 2022, 41(9): 3315-3323. |
[8] | 张日红, 明维, 万文豪, 刘云鹏. 高强粉煤灰-渣土人造骨料的制备与微结构表征[J]. 硅酸盐通报, 2022, 41(8): 2819-2827. |
[9] | 牟新宇, 于子浩, 鲍玖文, 张鹏. 自密实再生混凝土工作及力学性能研究进展[J]. 硅酸盐通报, 2022, 41(5): 1638-1648. |
[10] | 李航, 廖建国, 马婷婷, 冯锦伦. 钙-磷系自固化材料改性研究进展[J]. 硅酸盐通报, 2022, 41(4): 1454-1463. |
[11] | 刘赫, 段广超, 张景怡, 杨彦海, 张怀志. 含沥青路面再生骨料的自密实混凝土损伤本构关系[J]. 硅酸盐通报, 2022, 41(2): 469-478. |
[12] | 陈鹏博, 李北星, 殷实, 杨宏天. 同掺再生粗细骨料混凝土的力学与耐久性能研究[J]. 硅酸盐通报, 2022, 41(12): 4300-4309. |
[13] | 刘云鹏, 申培亮, 何永佳, 王发洲. 特种骨料混凝土的研究进展[J]. 硅酸盐通报, 2021, 40(9): 2831-2855. |
[14] | 姚苏琴, 查文华, 刘新权, 季圣星, 何昌春, 余跃. 萍乡废弃煤矸石理化特性及热活化性能研究[J]. 硅酸盐通报, 2021, 40(7): 2280-2287. |
[15] | 范小春, 张雯静, 梁天福, 陈凯风. 回收轮胎钢纤维再生骨料混凝土基本力学性能试验研究[J]. 硅酸盐通报, 2021, 40(7): 2331-2340. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||