硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (1): 31-47.
所属专题: 水泥混凝土
李妤茜, 乔秀臣
收稿日期:
2022-08-17
修订日期:
2022-09-19
出版日期:
2023-01-15
发布日期:
2023-02-15
通信作者:
乔秀臣,博士,教授。E-mail:xiuchenqiao@ecust.edu.cn
作者简介:
李妤茜(1998—),女,硕士研究生。主要从事工业固废资源化方面的研究。E-mail:yuximaill@163.com
基金资助:
LI Yuxi, QIAO Xiuchen
Received:
2022-08-17
Revised:
2022-09-19
Online:
2023-01-15
Published:
2023-02-15
摘要: 钙矾石是硫铝酸盐水泥、通用硅酸盐水泥以及其他无熟料水泥等胶凝材料的重要水化产物之一,其晶体结构由中心柱和平行中心柱的沟槽组成。沟槽结构围绕中心柱呈六边形排列,硫酸根和水分子在沟槽中通过氢键网络将整个结构连接在一起。在水泥等胶凝材料的水化反应中,钙矾石晶体容易受到所处环境等外部因素的影响。其中反应物离子的过饱和度、温度、减水剂、氯离子、晶种等外部因素往往会改变钙矾石晶体结构中水分子和氢键的数量,进而改变晶体结构的稳定性及形貌等。此外,在合成钙矾石晶体过程中,搅拌桨型式及转速等也会影响钙矾石晶体结构和形貌,从而造成认知的不统一。本文在系统综述钙矾石晶体结构基础上,详细汇总了各种外部因素对钙矾石晶体结构和形貌的影响,同时介绍了各种研究手段,并对钙矾石晶体形成与形貌的研究方向提出了建议。
中图分类号:
李妤茜, 乔秀臣. 外部因素对钙矾石晶体结构及形貌的影响综述[J]. 硅酸盐通报, 2023, 42(1): 31-47.
LI Yuxi, QIAO Xiuchen. Review on Influences of External Factors on Crystal Structure and Morphology of Ettringite[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(1): 31-47.
[1] VLADU M C. Calcium sulphoaluminate hydrates crystal growth, stability and flow properties[D]. UK: the University of Edinburgh, 2005. [2] 侯云芬,常 宇,黄天勇.三元胶凝材料比例对自流平砂浆性能的影响[J].硅酸盐通报,2020,39(5):1408-1414. HOU Y F, CHANG Y, HUANG T Y. Effect of proportion of ternary cementitious materials on properties of self-leveling mortar[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1408-1414 (in Chinese). [3] ZHANG H, LI L, WANG W B. Effects of temperature rising inhibitor on nucleation and growth process of ettringite[J]. Journal of Solid State Chemistry, 2019, 274: 222-228. [4] HARGIS C W, KIRCHHEIM A P, MONTEIRO P J M, et al. Early age hydration of calcium sulfoaluminate (synthetic ye’elimite, C4A3$\bar{S}$) in the presence of gypsum and varying amounts of calcium hydroxide[J]. Cement and Concrete Research, 2013, 48: 105-115. [5] ZHANG Q W, SAITO F. Sonochemical synthesis of ettringite from a powder mixture suspended in water[J]. Powder Technology, 2000, 107(1/2): 43-47. [6] ÁLVAREZ-AYUSO E, NUGTEREN H W. Synthesis of ettringite: a way to deal with the acid wastewaters of aluminium anodising industry[J]. Water Research, 2005, 39(1): 65-72. [7] 吴 贝.钙矾石对重金属的固化及稳定性研究[D].武汉:武汉理工大学,2011. WU B. Research on the solidification and stability of heavy metals in ettringite[D]. Wuhan: Wuhan University of Technology, 2011 (in Chinese). [8] POUPELLOZ E, GAUFFINET S, NONAT A. Study of nucleation and growth processes of ettringite in diluted conditions[J]. Cement and Concrete Research, 2020, 127: 105915. [9] 陈凤琴.现代混凝土胶凝体系中钙矾石生长特性的研究[D].武汉:武汉理工大学,2011. CHEN F Q. Research on ettringite growth characteristics in modern concrete[D]. Wuhan: Wuhan University of Technology, 2011 (in Chinese). [10] HARTMAN M R, BERLINER R. Investigation of the structure of ettringite by time-of-flight neutron powder diffraction techniques[J]. Cement and Concrete Research, 2006, 36(2): 364-370. [11] 郝璟珂,宋远明,王志娟,等.AFm阴离子类型对硫铝酸盐水泥水化产物钙矾石稳定性的影响[J].硅酸盐学报,2019,47(11):1554-1558. HAO J K, SONG Y M, WANG Z J, et al. Effect of AFm anion type on stability of ettringite generated from calcium sulphoaluminate cement hydration[J]. Journal of the Chinese Ceramic Society, 2019, 47(11): 1554-1558 (in Chinese). [12] SARKAR P K, MITRA N, PRASAD D. Molecular level deformation mechanism of ettringite[J]. Cement and Concrete Research, 2019, 124: 105836. [13] LIU L C, JARAMILLO-BOTERO A, GODDARD W A, et al. Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations[J]. The Journal of Physical Chemistry A, 2012, 116(15): 3918-3925. [14] RENAUDIN G, FILINCHUK Y, NEUBAUER J, et al. A comparative structural study of wet and dried ettringite[J]. Cement and Concrete Research, 2010, 40(3): 370-375. [15] CLARK S M, COLAS B, KUNZ M, et al. Effect of pressure on the crystal structure of ettringite[J]. Cement and Concrete Research, 2008, 38(1): 19-26. [16] ZHONG L H, QU J, LI X W, et al. Simultaneous synthesis of ettringite and absorbate incorporation by aqueous agitation of a mechanochemically prepared precursor[J]. RSC Advances, 2016, 6(42): 35203-35209. [17] 曾欠谱.电场对水泥基材料钙矾石形成与稳定的影响[D].重庆:重庆大学,2018. ZENG Q P. Effect of electrical field on formation and stability of ettringite in cement-based materials[D]. Chongqing: Chongqing University, 2018 (in Chinese). [18] 彭家惠,楼宗汉.钙矾石形成机理的研究[J].硅酸盐学报,2000,28(6):511-515. PENG J H, LOU Z H. Study on the mechanism of ettringite formation[J]. Journal of the Chinese Ceramic Society, 2000, 28(6): 511-515 (in Chinese). [19] MOORE A, TAYLOR H F W. Crystal structure of ettringite[J]. Nature, 1968, 218(5146): 1048-1049. [20] 祝海龙.无水硫铝酸钙及其水化产物结构研究[D].济南:济南大学,2014. ZHU H L. Study on structure of anhydrous calcium sulphoaluminate and hydration products[D]. Jinan: University of Jinan, 2014 (in Chinese). [21] GOETZ-NEUNHOEFFER F, NEUBAUER J, SCHWESIG P. Mineralogical characteristics of ettringites synthesized from solutions and suspensions[J]. Cement and Concrete Research, 2006, 36(1): 65-70. [22] HARTMAN M R, BRADY S K, BERLINER R, et al. The evolution of structural changes in ettringite during thermal decomposition[J]. Journal of Solid State Chemistry, 2006, 179(4): 1259-1272. [23] SPEZIALE S, JIANG F M, MAO Z, et al. Single-crystal elastic constants of natural ettringite[J]. Cement and Concrete Research, 2008, 38(7): 885-889. [24] MANTELLATO S, PALACIOS M, FLATT R J. Impact of sample preparation on the specific surface area of synthetic ettringite[J]. Cement and Concrete Research, 2016, 86: 20-28. [25] HOU D S, LI T, HAN Q H, et al. Insight on the sodium and chloride ions adsorption mechanism on the ettringite crystal: structure, dynamics and interfacial interaction[J]. Computational Materials Science, 2018, 153: 479-492. [26] TARARUSHKIN E V, PISAREV V V, KALINICHEV A G. Atomistic simulations of ettringite and its aqueous interfaces: structure and properties revisited with the modified ClayFF force field[J]. Cement and Concrete Research, 2022, 156: 106759. [27] SCHOLTZOVÁ E, KUCKOVÁ L, KOÍEK J, et al. Structural and spectroscopic characterization of ettringite mineral-combined DFT and experimental study[J]. Journal of Molecular Structure, 2015, 1100: 215-224. [28] MANZANO H, AYUELA A, TELESCA A, et al. Ettringite strengthening at high pressures induced by the densification of the hydrogen bond network[J]. The Journal of Physical Chemistry C, 2012, 116(30): 16138-16143. [29] JAKOB C, JANSEN D, UKRAINCZYK N, et al. Relating ettringite formation and rheological changes during the initial cement hydration: a comparative study applying XRD analysis, rheological measurements and modeling[J]. Materials (Basel, Switzerland), 2019, 12(18): 2957. [30] JIMÉNEZ A, PRIETO M. Thermal stability of ettringite exposed to atmosphere: implications for the uptake of harmful ions by cement[J]. Environmental Science & Technology, 2015, 49(13): 7957-7964. [31] SHIMADA Y, YOUNG J F. Structural changes during thermal dehydration of ettringite[J]. Advances in Cement Research, 2001, 13(2): 77-81. [32] SKOBLINSKAYA N N, KRASILNIKOV K G. Changes in crystal structure of ettringite on dehydration.1[J]. Cement and Concrete Research, 1975, 5(4): 381-393. [33] SKOBLINSKAYA N N, KRASILNIKOV K G. Changes in crystal structure of ettringite on dehydration.2[J]. Cement and Concrete Research, 1975, 5(4): 381-393. [34] 刘崇熙.钙矾石脱水过程中晶体结构的演变[J].长江科学院院报,1989,6(3):60-67. LIU C X. The evolution of the crystal of ettringite during dehydration[J]. Journal of Yangtze River Scientific Research Institute, 1989, 6(3): 60-67 (in Chinese). [35] 傅翠晓.低碱度硫铝酸盐水泥浆体中钙矾石的形成规律[D].唐山:河北理工学院,2001. FU C X. The formation rule of ettringite in low pH value sulfoaluminate cement pastes[D].Tangshan: Hebei Institute of Technology, 2001 (in Chinese). [36] MEHTA P K. Scanning electron micrographic studies of ettringite formation[J]. Cement and Concrete Research, 1976, 6(2): 169-182. [37] 尹凌云.无碱液态速凝剂的研究[D].西安:长安大学,2013. YIN L Y. Study on the liquid alkali-free accelerator[D]. Xi’an: Changan University, 2013 (in Chinese). [38] HALL C, BARNES P, BILLIMORE A D, et al. Thermal decomposition of ettringite Ca6[Al(OH)6]2(SO4)3·26H2O[J]. Journal of the Chemical Society, Faraday Transactions, 1996, 92(12): 2125-2129. [39] 兰 蒙,王迎斌,贺行洋,等.高温环境下碳硫硅钙石-钙矾石固溶体的研究[J].硅酸盐通报,2017,36(8):2570-2575. LAN M, WANG Y B, HE X Y, et al. Research of thaumasite-ettringite solid solution at high temperatures[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(8): 2570-2575 (in Chinese). [40] 陈凤琴.温度对钙矾石生长特性的影响[J].建材世界,2011,32(3):7-9+20. CHEN F Q. Effect of temperature on the growth characteristics of ettringite[J]. The World of Building Materials, 2011, 32(3): 7-9+20 (in Chinese). [41] 孙 奇.水化硫铝酸钙材料的可控制备研究[D].哈尔滨:哈尔滨工业大学,2016. SUN Q. Research on controlled preparation of ettringite[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese). [42] 孙玉柱.碳酸锂结晶过程研究[D].上海:华东理工大学,2010. SUN Y Z. Study on the crystallization of lithium carbonate[D]. Shanghai: East China University of Science and Technology, 2010 (in Chinese). [43] 杨长珊,薛君玕.C2AS玻璃在石膏-石灰溶液中形成钙矾石过程[J].硅酸盐通报,1985,4(6):6-10. YANG C S, XUE J G. The process of ettringite formation of C2AS glass in gypsum-lime solution[J]. Bulletin of Silicate, 1985, 4(6): 6-10 (in Chinese). [44] BARBARULO R, PEYCELON H, LECLERCQ S. Chemical equilibria between C-S-H and ettringite, at 20 and 85 ℃[J]. Cement and Concrete Research, 2007, 37(8): 1176-1181. [45] PERKINS R B, PALMER C D. Solubility of ettringite (Ca6[Al(OH)6]2(SO4)3 · 26H2O) at 5~75 ℃[J]. Geochimica et Cosmochimica Acta, 1999, 63(13/14): 1969-1980. [46] SHIMADA Y, YOUNG J F. Thermal stability of ettringite in alkaline solutions at 80 ℃[J]. Cement and Concrete Research, 2004, 34(12): 2261-2268. [47] 曾 潇,水中和,丁 沙,等.养护条件对过硫磷石膏矿渣水泥砂浆性能的影响[J].混凝土,2015(2):110-113. ZENG X, SHUI Z H, DING S, et al. Influence of curing conditions on the performance of persulphated phosphogypsum-slag cement mortar[J]. Concrete, 2015(2): 110-113 (in Chinese). [48] 蓝俊康.由液相SO2-4浓度的变化解译钙矾石的热稳定性[J].桂林工学院学报,2004,24(4):480-482. LAN J K. Thermal stability of ettringite expounded by the changes of sulfate concentrations in solution[J]. Journal of Guilin Institute of Technology, 2004, 24(4): 480-482 (in Chinese). [49] MEHTA P K. Stability of ettringite on heating[J]. Journal of the American Ceramic Society, 1972, 55(1): 55-57. [50] KAUFMANN J, WINNEFELD F, LOTHENBACH B. Stability of ettringite in CSA cement at elevated temperatures[J]. Advances in Cement Research, 2016, 28(4): 251-261. [51] CODY A M, LEE H, CODY R D, et al. The effects of chemical environment on the nucleation, growth, and stability of ettringite [Ca3Al(OH)6]2(SO4)3·26H2O[J]. Cement and Concrete Research, 2004, 34(5): 869-881. [52] SHI C, ZHANG G, HE T S, et al. Effects of superplasticizers on the stability and morphology of ettringite[J]. Construction and Building Materials, 2016, 112: 261-266. [53] 李琪琪.高效减水剂对富含钙矾石类水泥基修补材料的影响研究[D].西安:西安建筑科技大学,2021. LI Q Q. Research on effect of superplasticizers on properties of AFt-rich cement-based repair materials[D]. Xi’an: Xi’an University of Architecture and Technology, 2021 (in Chinese). [54] 杨守磊.高效减水剂及缓凝剂对水泥初期水化与钙矾石结晶形成的影响[D].西安:西安建筑科技大学,2011. YANG S L. Influence of the superplasticizers and the retarders on the initial hydration of cement and the preliminary formation of ettringite[D]. Xi’an: Xi’an University of Architecture and Technology, 2011 (in Chinese). [55] CARAZEANU I, CHIRILA E, GEORGESCU M. Investigation of the hydration process in 3CaO·Al2O3-CaSO4·2H2O-plasticizer-H2O systems by X-ray diffraction[J]. Talanta, 2002, 57(4): 617-623. [56] MEDALA M, LABBEZ C, POCHARD I, et al. Ettringite surface chemistry: interplay of electrostatic and ion specificity[J]. Journal of Colloid and Interface Science, 2011, 354(2): 765-770. [57] PLANK J, HIRSCH C. Impact of zeta potential of early cement hydration phases on superplasticizer adsorption[J]. Cement and Concrete Research, 2007, 37(4): 537-542. [58] FERRARI L, KAUFMANN J, WINNEFELD F, et al. Impact of particle size on interaction forces between ettringite and dispersing comb-polymers in various electrolyte solutions[J]. Journal of Colloid and Interface Science, 2014, 419: 17-24. [59] SHA S N, MA Y H, LEI L, et al. Effect of polycarboxylate superplasticizers on the growth of ettringite in deionized water and synthetic cement pore solution[J]. Construction and Building Materials, 2022, 341: 127602. [60] ZINGG A, HOLZER L, KAECH A, et al. The microstructure of dispersed and non-dispersed fresh cement pastes: new insight by cryo-microscopy[J]. Cement and Concrete Research, 2008, 38(4): 522-529. [61] MEIER M R, RINKENBURGER A, PLANK J. Impact of different types of polycarboxylate superplasticisers on spontaneous crystallisation of ettringite[J]. Advances in Cement Research, 2016, 28: 310-319. [62] MEIER M R, PLANK J. Crystal growth of [Ca3Al(OH)6·12H2O]2·(SO4)3·2H2O (ettringite) under microgravity: on the impact of anionicity of polycarboxylate comb polymers[J]. Journal of Crystal Growth, 2016, 446: 92-102. [63] EKOLU S, SOLOMON F, RAKGOSI G. Chloride-induced delayed ettringite formation in Portland cement mortars[J]. Construction and Building Materials, 2022, 340: 127654. [64] EKOLU S O, THOMAS M D A, HOOTON R D. Pessimum effect of externally applied chlorides on expansion due to delayed ettringite formation: proposed mechanism[J]. Cement and Concrete Research, 2006, 36(4): 688-696. [65] HAJILAR S, SHAFEI B. Atomic-scale investigation of physical adsorption of water molecules and aggressive ions to ettringite’s surfaces[J]. Journal of Colloid and Interface Science, 2018, 513: 104-116. [66] KALINICHEV A, KIRKPATRICK R. Molecular dynamics modeling of chloride binding to the surfaces of calcium hydroxide, hydrated calcium aluminate, and calcium silicate phases[J]. Chemistry of Materials, 2002, 14: 3539-3549. [67] 钱觉时,余金城,孙化强,等.钙矾石的形成与作用[J].硅酸盐学报,2017,45(11):1569-1581. QIAN J S, YU J C, SUN H Q, et al. Formation and function of ettringite in cement hydrates[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1569-1581 (in Chinese). [68] GOETZ-NEUNHOEFFER F, NEUBAUER J. Refined ettringite (Ca6Al2(SO4)3(OH)12·26H2O) structure for quantitative X-ray diffraction analysis[J]. Powder Diffraction, 2006, 21(1): 4-11. [69] 郑佳明.干湿循环与碳化对混凝土硫酸盐侵蚀的影响研究[D].扬州:扬州大学,2009. ZHENG J M. Research on the sulfate attack of concrete under the dry and wet cycles and carbonation[D]. Yangzhou: Yangzhou University, 2009 (in Chinese). [70] 吴宗道.钙矾石的显微形貌[J].中国建材科技,1995,4(4):9-14+3. WU Z D. Micromorphology of ettringite[J]. China Building Materials Science & Technology, 1995, 4(4): 9-14+3 (in Chinese). [71] TOSUN K, BARADAN B. Effect of ettringite morphology on DEF-related expansion[J]. Cement and Concrete Composites, 2010, 32(4): 271-280. [72] KOMATSU R, MIZUKOSHI N, MAKIDA K, et al. In-situ observation of ettringite crystals[J]. Journal of Crystal Growth, 2009, 311(3): 1005-1008. [73] 张飞宇.湿法烟气脱硫石膏成核与结晶特性研究[D].北京:华北电力大学(北京),2021. ZHANG F Y. Research on nucleation and crystallization characteristics of gypsum from wet flue gas desulfurization process[D]. Beijing: North China Electric Power University, 2021 (in Chinese). [74] 杨 晨.多晶相水合碳酸镁结晶生长过程调控研究[D].上海:华东理工大学,2013. YANG C. Study on the regulation of crystallization and growth process of multiple hydrated magnesium carbonate phases[D]. Shanghai: East China University of Science and Technology, 2013 (in Chinese). [75] 周进龙.连续搅拌结晶制备大颗粒硫酸钠试验研究及模拟分析[D].湘潭:湘潭大学,2015. ZHOU J L. Experimental research and numerical simulation on the preparation of large particles of sodium in continuous stirring crystallization[D]. Xiangtan: Xiangtan University, 2015 (in Chinese). [76] 刘玉平.搅拌式生物反应器溶解氧性能研究[D].济南:山东大学,2005. LIU Y P. Study on dissolved oxygen performance in stirred bioreactor. Jinan: Shandong University, 2005 (in Chinese). [77] PATEL D, EIN-MOZAFFARI F, MEHRVAR M. Dynamic performance of continuous-flow mixing of pseudoplastic fluids exhibiting yield stress in stirred reactors[J]. Industrial & Engineering Chemistry Research, 2011, 50(15): 9377-9389. [78] 葛春艳.基于PIV和CFD的搅拌桨设计和改进[D].杭州:浙江大学,2014. GE C Y. Design and improvement of agitators using PIV and CFD methods[D]. Hangzhou: Zhejiang University, 2014 (in Chinese). [79] 高绍楠,黄雄斌.不同搅拌桨对反应结晶效果的影响[J].北京化工大学学报(自然科学版),2014,41(2):25-29. GAO S N, HUANG X B. Effect of impeller type on crystallization reactions[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2014, 41(2): 25-29 (in Chinese). [80] 薛兆鹏.基于流场和结构优化的搅拌桨设计/制造集成技术研究[D].天津:天津大学,2003. XUE Z P. Study on CFD and FEM based integration technique of propeller design & manufacture[D]. Tianjin: Tianjin University, 2003 (in Chinese). [81] 刘 越.7-ADCA反应结晶过程研究[D].天津:天津大学,2003. LIU Y. Reactive crystallization of 7-ADCA[D]. Tianjin: Tianjin University, 2003 (in Chinese). |
[1] | 周丽娜, 蔡颖, 马财龙, 罗玲. 水滑石复合水泥基材料氯离子吸附能力的研究进展[J]. 硅酸盐通报, 2023, 42(4): 1137-1147. |
[2] | 范小春, 汪阳, 高旭, 张宇, 袁波. 亚硝酸钙与富铝矿相协同调控碱矿渣氯离子固化能力研究[J]. 硅酸盐通报, 2023, 42(4): 1148-1155. |
[3] | 赵卫全, 任增增, 张金接, 李勇辉, 张翔宇. 超细水泥-硅灰二元低pH注浆材料特性研究[J]. 硅酸盐通报, 2023, 42(4): 1156-1165. |
[4] | 王洪镇, 沈昊, 曹万智, 甘季中, 李文琦, 王海瑞, 褚文斌. 硼酸对硫铝酸盐基复合胶凝材料性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1166-1173. |
[5] | 梁锐, 孔森, 张琰, 刘佳龙. 梳状纳米二氧化硅分散液的制备及对水泥基材料性能的提升[J]. 硅酸盐通报, 2023, 42(4): 1183-1193. |
[6] | 陈春红, 俞江, 刘荣桂, 王磊, 刘惠, 伍金龙. 干湿循环下再生细骨料混凝土的氯离子渗透性能[J]. 硅酸盐通报, 2023, 42(4): 1217-1225. |
[7] | 王杰, 王勇, 王宇强, 王彩萍, 叶圣茂, 高鹏. 循环流化床燃煤固硫灰的CBR特性及膨胀机理研究[J]. 硅酸盐通报, 2023, 42(4): 1323-1332. |
[8] | 安赛, 王宝民, 陈文秀, 赵庆新. 电石渣激发矿渣-粉煤灰复合胶凝材料的作用机制[J]. 硅酸盐通报, 2023, 42(4): 1333-1343. |
[9] | 陈俊松, 乔敏, 吴庆勇, 李贞, 赵爽. 不同化学激发剂对再生微粉活性的影响及机理研究[J]. 硅酸盐通报, 2023, 42(4): 1409-1417. |
[10] | 修建得, 金祖权, 李宁, 侯保荣. 海洋盐雾环境下混凝土中氯离子传输研究进展[J]. 硅酸盐通报, 2023, 42(3): 771-785. |
[11] | 施晓晨, 水中和, 李浩源, 肖勋光, 孙涛, 王雷冲. 紫外预处理对硅酸盐水泥浆体早期碳化性能的影响[J]. 硅酸盐通报, 2023, 42(3): 786-792. |
[12] | 肖家发, 赵志远, 陈衡, 侯鹏坤, 盛春亮, 黄广臣. 硼砂与蔗糖对磷酸钾镁水泥性能的影响及作用机制[J]. 硅酸盐通报, 2023, 42(3): 793-801. |
[13] | 周剑峰, 杨涛, 张菁燕, 周文平, 高璇. 早期水热养护对铝酸钙水泥结构稳定性的影响[J]. 硅酸盐通报, 2023, 42(3): 802-807. |
[14] | 葛津宇, 韦华, 徐菲, 韩雪松, 朱鹏飞, 肖怀前, 李怀森. CSH-蒙脱石界面能对水泥固化蒙脱土抗压强度的影响[J]. 硅酸盐通报, 2023, 42(3): 827-836. |
[15] | 高秀梅, 刘曙光, 闫敏. 冻融循环后PVA-ECC拉伸性能衰减规律研究[J]. 硅酸盐通报, 2023, 42(3): 837-844. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||