[1] DING L P, TIANDONG Y H, SHAO P, et al. Crystal structures, phase stabilities, electronic properties, and hardness of yttrium borides: new insight from first-principles calculations[J]. The Journal of Physical Chemistry Letters, 2021, 12(22): 5423-5429. [2] KOVÁČOVÁ Z, OROVČÍK L’, SEDLÁČEK J, et al. The effect of YB4 addition in ZrB2-SiC composites on the mechanical properties and oxidation performance tested up to 2 000 ℃[J]. Journal of the European Ceramic Society, 2020, 40(12): 3829-3843. [3] VORONOVYCH D, TARAN A, PODSHYVALOVA O, et al. Thermionic emission of yttrium dodecaboride single crystal[J]. Solid State Phenomena, 2019, 289: 47-52. [4] 陈 健,刘 欢,史 磊,等.YB4光热转换材料的制备及其性能[J].贵州师范大学学报(自然科学版),2018,36(5):48-53. CHEN J, LIU H, SHI L, et al. Synthesis and properties of YB4 photothermal conversion materials[J]. Journal of Guizhou Normal University (Natural Sciences), 2018, 36(5): 48-53 (in Chinese). [5] ZHOU Y C, LIU B, XIANG H M, et al. YB6: a ‘ductile’ and soft ceramic with strong heterogeneous chemical bonding for ultrahigh-temperature applications[J]. Materials Research Letters, 2015, 3(4): 210-215. [6] ZHOU Y C, XIANG H M, FENG Z H, et al. Theoretical prediction on electronic structure, mechanical properties and lattice dynamics of YB4 for ultrahigh temperature applications[J]. Journal of the European Ceramic Society, 2015, 35(16): 4437-4445. [7] ZHOU Y C, DAI F Z, XIANG H M, et al. Shear anisotropy: tuning high temperature metal hexaborides from soft to extremely hard[J]. Journal of Materials Science & Technology, 2017, 33(11): 1371-1377. [8] SEKIDO N, OHMURA T, PEREPEZKO J H. Mechanical properties and dislocation character of YB4 and YB6[J]. Intermetallics, 2017, 89: 86-91. [9] CAHILL J T, GRAEVE O A. Hexaborides: a review of structure, synthesis and processing[J]. Journal of Materials Research and Technology, 2019, 8(6): 6321-6335. [10] KOVÁČOVÁ Z, BAČA L’, NEUBAUER E, et al. Synthesis and reaction sintering of YB4 ceramics[J]. Ceramics International, 2019, 45(15): 18795-18802. [11] FAHRENHOLTZ W G, BINNER J, ZOU J. Synthesis of ultra-refractory transition metal diboride compounds[J]. Journal of Materials Research, 2016, 31(18): 2757-2772. [12] LI J G, PENG A Y, HE Y, et al. Synthesis of pure YB4 powder via the reaction of Y2O3 with B4C[J]. Journal of the American Ceramic Society, 2012, 95(7): 2127-2129. [13] GUO Q Q, XIANG H M, SUN X, et al. Preparation of porous YB4 ceramics using a combination of in situ borothermal reaction and high temperature partial sintering[J]. Journal of the European Ceramic Society, 2015, 35(13): 3411-3418. [14] 王 军,包黎红,潮洛蒙.六硼化钇纳米粒子超导及光吸收性能研究[J].内蒙古师范大学学报(自然科学版),2021,50(3):204-209. WANG J, BAO L H, CHAO L M. Study on superconductivity and optical absorption of yttrium hexaboride nanoparticles[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2021, 50(3): 204-209 (in Chinese). [15] ETOURNEAU J, MERCURIO J P, HAGENMULLER P. Compounds based on octahedral B6 units: hexaborides and tetraborides[M]//Boron and Refractory Borides. Springer, Berlin, Heidelberg, 1977: 115-138. [16] ZHANG W M, ZHAO B, NI N, et al. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance[J]. Journal of Materials Science & Technology, 2021, 87: 155-166. [17] ZHOU Y C, WANG X F, XIANG H M, et al. Theoretical prediction, preparation, and mechanical properties of YbB6, a candidate interphase material for future UHTCf/UHTC composites[J]. Journal of the European Ceramic Society, 2016, 36(15): 3571-3579. [18] LIU Z, LI Z H, LIU J H, et al. Long-circulating Er3+-doped Yb2O3 up-conversion nanoparticle as an in vivo X-ray CT imaging contrast agent[J]. Biomaterials, 2012, 33(28): 6748-6757. [19] CHEN I W, WANG X H. Sintering dense nanocrystalline ceramics without final-stage grain growth[J]. Nature, 2000, 404(6774): 168-171. [20] EVANS A G, CHARLES E A. Fracture toughness determinations by indentation[J]. Journal of the American Ceramic Society, 1976, 59(7/8): 371-372. [21] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570. [22] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [23] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. [24] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. [25] MOSTARI F, RAHMAN M A, KHATUN R. First principles study on the structural, elastic, electronic and optical properties of cubic ‘half-heusler’ alloy RuVAs under pressure[J]. International Journal of Material and Mathematical Sciences, 2020: 51-63. [26] PETTIFOR D G. Theoretical predictions of structure and related properties of intermetallics[J]. Materials Science and Technology, 1992, 8(4): 345-349. [27] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823-843. [28] PIZ M, FILIPEK E, JABLONSKI M. Mechanochemical synthesis and thermal stability of phases in the Y2O3-Yb2O3 system[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(6): 4313-4319. [29] WANG X F, XIANG H M, SUN X, et al. Porous YbB6 ceramics prepared by in situ reaction between Yb2O3 and B4C combined with partial sintering[J]. Journal of the American Ceramic Society, 2015, 98(7): 2234-2239. [30] CHOPADE S S, BARVE S A, THULASI RAMAN K H, et al. RF plasma MOCVD of Y2O3 thin films: effect of RF self-bias on the substrates during deposition[J]. Applied Surface Science, 2013, 285: 524-531. [31] LI Y Q, QIU T. Oxidation behaviour of boron carbide powder[J]. Materials Science and Engineering: A, 2007, 444(1/2): 184-191. [32] TEL’NOVA G B, KONOVALOV A A, DUDENKOV I V, et al. Mechanisms of formation of solid solutions and optical spectroscopic properties of transparent ceramic materials based on Y2O3: Yb[J]. Russian Journal of Inorganic Chemistry, 2013, 58(11): 1335-1340. [33] KINGERY W D, BOWEN H K, UHLMANN D R, et al. Introduction to ceramics[J]. Journal of the Electrochemical Society, 1977, 124(3): 152C. [34] ZHU S M, FAHRENHOLTZ W G, HILMAS G E. Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics[J]. Journal of the European Ceramic Society, 2007, 27(4): 2077-2083. [35] BARSOUM M W, EL-RAGHY T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2[J]. Journal of the American Ceramic Society, 1996, 79(7): 1953-1956. [36] LI F Z, LIU B, WANG J Y, et al. Hf3AlN: a novel layered ternary ceramic with excellent damage tolerance[J]. Journal of the American Ceramic Society, 2010, 93(1): 228-234. |