[1] BAINO F, FERRARIS M, BRETCANU O, et al. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution[J]. Journal of Biomaterials Applications, 2013, 27(7): 872-890. [2] MA Z Y, XIE J, SHAN X Z, et al. High solid content 45S5 Bioglass®-based scaffolds using stereolithographic ceramic manufacturing: process, structural and mechanical properties[J]. Journal of Mechanical Science and Technology, 2021, 35(2): 823-832. [3] MA H S, FENG C, CHANG J, et al. 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy[J]. Acta Biomaterialia, 2018, 79: 37-59. [4] LI X, ZHANG H, SHEN Y F, et al. Fabrication of porous β-TCP/58S bioglass scaffolds via top-down DLP printing with high solid loading ceramic-resin slurry[J]. Materials Chemistry and Physics, 2021, 267: 124587. [5] ECKEL Z C, ZHOU C Y, MARTIN J H, et al. Additive manufacturing of polymer-derived ceramics[J]. Science, 2016, 351(6268): 58-62. [6] GUO B B, JI X Z, CHEN X T, et al. A highly stretchable and intrinsically self-healing strain sensor produced by 3D printing[J]. Virtual and Physical Prototyping, 2020, 15(1): 520-531. [7] SUN J X, CHEN X T, WADE-ZHU J, et al. A comprehensive study of dense zirconia components fabricated by additive manufacturing[J]. Additive Manufacturing, 2021, 43: 101994. [8] LEE J B, MAENG W Y, KOH Y H, et al. Porous calcium phosphate ceramic scaffolds with tailored pore orientations and mechanical properties using lithography-based ceramic 3D printing technique[J]. Materials (Basel, Switzerland), 2018, 11(9): 1711. [9] 李腾飞,伍言龙,赵广宾,等.多孔硅酸钙/明胶复合支架制备工艺及力学性能研究[J].西安交通大学学报,2021,55(4):172-180. LI T F, WU Y L, ZHAO G B, et al. Fabrication process and mechanical performance of porous calcium silicate/gelatin composite scaffold[J]. Journal of Xi’an Jiaotong University, 2021, 55(4): 172-180 (in Chinese). [10] 化帅斌,朱 皓,吴甲民,等.点阵结构羟基磷灰石支架的数字光处理制备及性能[J].硅酸盐学报,2021,49(4):608-617. HUA S B, ZHU H, WU J M, et al. Performance of lattice structure scaffold prepared via digital light processing manufacture by DLP technology[J]. Journal of the Chinese Ceramic Society, 2021, 49(4): 608-617 (in Chinese). [11] 刘春春.面曝光固化成型羟基磷灰石支架的工艺研究[D].北京:北京工业大学,2017. LIU C C. Research on the fabrication of HA scaffold based on mask projetion stereolithography[D]. Beijing: Beijing University of Technology, 2017 (in Chinese). [12] 郑孟杰,宗春琳,张玉灿,等.新型3D打印生物材料用于兔颅骨缺损修复重建的实验研究[J].口腔颌面外科杂志,2017,27(2):89-93. ZHENG M J, ZONG C L, ZHANG Y C, et al. 3D printed bone graft material AP40mod repair calvarium defect in rabbit[J]. Journal of Oral and Maxillofacial Surgery, 2017, 27(2): 89-93 (in Chinese). [13] 许方方.EPCs/BMSCs复合3D打印个性化生物玻璃陶瓷(AP40mod)修复兔下颌骨极限缺损的研究[D].西安:空军军医大学,2019. XU F F. Experimental study on repair of the rabbit critical-size in mandibles by 3D peinted bioactive glass ceramics with EPCs/BMSCs[D]. Xi’an: Air Force Medical University, 2019 (in Chinese). [14] XU F F, REN H, ZHENG M J, et al. Development of biodegradable bioactive glass ceramics by DLP printed containing EPCs/BMSCs for bone tissue engineering of rabbit mandible defects[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103: 103532. [15] 梁浩文,王 月,陈小腾,等.3D打印生物陶瓷人工骨支架的研究进展[J].粉末冶金技术,2022,40(2):100-109. LIANG H W, WANG Y, CHEN X T, et al. Progress of 3D printing bioceramic on artificial bone scaffolds[J]. Powder Metallurgy Technology, 2022, 40(2): 100-109 (in Chinese). [16] LIU K, ZHANG K, BOURELL D L, et al. Gelcasting of zirconia-based all-ceramic teeth combined with stereolithography[J]. Ceramics International, 2018, 44(17): 21556-21563. [17] GENTRY S P, HALLORAN J W. Absorption effects in photopolymerized ceramic suspensions[J]. Journal of the European Ceramic Society, 2013, 33(10): 1989-1994. [18] GENTRY S P, HALLORAN J W. Depth and width of cured lines in photopolymerizable ceramic suspensions[J]. Journal of the European Ceramic Society, 2013, 33(10): 1981-1988. [19] 杨温鑫,孟晓燕,邓 欣.粉体粒径对金刚石光固化3D打印成型工艺及其制备的复合材料机械性能的影响[J].材料导报,2023(12):1-12. YANG W X, MENG X Y, DENG X. Effect of particle size on the 3D printing process and mechanical properties of diamond-resin composites fabricated by digital light processing[J]. Materials Reports, 2023(12): 1-12 (in Chinese). [20] ABOULIATIM Y, CHARTIER T, ABELARD P, et al. Optical characterization of stereolithography alumina suspensions using the Kubelka-Munk model[J]. Journal of the European Ceramic Society, 2009, 29(5): 919-924. [21] QIAN C C, HU K H, LI J H, et al. The effect of light scattering in stereolithography ceramic manufacturing[J]. Journal of the European Ceramic Society, 2021, 41(14): 7141-7154. [22] 王亚宁,张玉琪,宋索成,等.氧化锆陶瓷扫描光固化成形与脱脂烧结工艺研究[J].无机材料学报,2022,37(3):303-309. WANG Y N, ZHANG Y Q, SONG S C, et al. Laser stereolithography for zirconia ceramic fabrication and its debinding and sintering process[J]. Journal of Inorganic Materials, 2022, 37(3): 303-309 (in Chinese). [23] CHEN X T, SUN J X, GUO B B, et al. Effect of the particle size on the performance of BaTiO3 piezoelectric ceramics produced by additive manufacturing[J]. Ceramics International, 2022, 48(1): 1285-1292. [24] SOUEIDAN A, GAN O, BOULER J, et al. Biodegradation of synthetic biphasic calcium phosphate and biological calcified substratum by cells of hemopoietic origin[J]. Cells and Materials, 1995, 5(1): 31-44. |