[1] KEULEN A, VAN ZOMEREN A, HARPE P, et al. High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete[J]. Waste Management, 2016, 49: 83-95. [2] BERTOLINI L, CARSANA M, CASSAGO D, et al. MSWI ashes as mineral additions in concrete[J]. Cement and Concrete Research, 2004, 34(10): 1899-1906. [3] HOLMES N, O’MALLEY H, CRIBBIN P, et al. Performance of masonry blocks containing different proportions of incinator bottom ash[J]. Sustainable Materials and Technologies, 2016, 8: 14-19. [4] LOGINOVA E, VOLKOV D S, VAN DE WOUW P M F, et al. Detailed characterization of particle size fractions of municipal solid waste incineration bottom ash[J]. Journal of Cleaner Production, 2019, 207: 866-874. [5] GHANEM H, KHATIB J, ELKORDI A. Effect of partial replacement of sand by MSWI-BA on the properties of mortar[J]. BAU Journal-Science and Technology, 2020, 1(2): 4. [6] SHEN P L, ZHENG H B, XUAN D X, et al. Feasible use of municipal solid waste incineration bottom ash in ultra-high performance concrete[J]. Cement and Concrete Composites, 2020, 114: 103814. [7] WOO B H, JEON I K, YOO D H, et al. Utilization of municipal solid waste incineration bottom ash as fine aggregate of cement mortars[J]. Sustainability, 2021, 13(16): 8832. [8] CHENG A. Effect of incinerator bottom ash properties on mechanical and pore size of blended cement mortars[J]. Materials & Design (1980—2015), 2012, 36: 859-864. [9] 尹红宇.混凝土孔结构的分形特征研究[D].南宁:广西大学,2006. YIN H Y. Study the fractal characteristic of concrete’s pore structure[D]. Nanning: Guangxi University, 2006 (in Chinese). [10] CHEN X D, WU S X, ZHOU J K. Influence of porosity on compressive and tensile strength of cement mortar[J]. Construction and Building Materials, 2013, 40: 869-874. [11] VICENTE M A, GONZÁLEZ D C, MÍNGUEZ J, et al. Influence of the pore morphology of high strength concrete on its fatigue life[J]. International Journal of Fatigue, 2018, 112: 106-116. [12] WANG L, JIN M M, WU Y H, et al. Hydration, shrinkage, pore structure and fractal dimension of silica fume modified low heat Portland cement-based materials[J]. Construction and Building Materials, 2021, 272: 121952. [13] 石东升,林书宇,韩佳彤.具有潜在活性的细骨料混凝土抗氯离子性能研究[J].混凝土,2022(3):113-116. SHI D S, LIN S Y, HAN J T. Study on chloride ion resistance of fine aggregate concrete with potential activity[J]. Concrete, 2022(3): 113-116 (in Chinese). [14] 刘 栋,李立寒.生活垃圾焚烧炉渣集料的胶凝特征[J].同济大学学报(自然科学版),2017,45(3):377-383. LIU D, LI L H. Cementitious properties of municipal solid waste incineration bottom ash aggregate[J]. Journal of Tongji University (Natural Science), 2017, 45(3): 377-383 (in Chinese). [15] 黄 元.生活垃圾焚烧灰渣代砂混凝土工程模拟构件力学性能研究[D].呼和浩特:内蒙古工业大学,2021:16-19. HUANG Y. The study on mechanical properties of simulating component of concrete project with MSWI as fine aggregate[D]. Hohhot: Inner Mongolia University of Tehchnology, 2021: 16-19 (in Chinese). [16] YAO Y B, LIU D M, CHE Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel, 2010, 89(7): 1371-1380. [17] 魏毅萌,柴军瑞,覃 源,等.冻融循环下再生混凝土孔隙分布变化及其对抗冻性能的影响[J].硅酸盐通报,2018,37(3):825-830. WEI Y M, CHAI J R, QIN Y, et al. Effect of pore distribution of recycled concrete on frost resistance under freeze-thaw cycling[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(3): 825-830 (in Chinese). [18] 邓祥辉,高晓悦,王 睿,等.再生混凝土抗冻性能试验研究及孔隙分布变化分析[J].材料导报,2021,35(16):16028-16034. DENG X H, GAO X Y, WANG R, et al. Study on frost resistance and pore distribution change of recycled concrete[J]. Materials Reports, 2021, 35(16): 16028-16034 (in Chinese). [19] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999:24. WU Z W, LIAN H Z. High performance concrete[M]. Beijing: China Railway Publishing House, 1999: 24 (in Chinese). [20] 丁向群,王 钰,邢 进,等.粉煤灰对混凝土干湿循环抗冻性能的影响[J].硅酸盐通报,2015,34(s1):17-21+26. DING X Q, WANG Y, XING J, et al. Influence of fly ash on frost resistance of concrete under dry-wet circulation[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(s1): 17-21+26 (in Chinese). [21] 熊建龙,王 凯,杜全先,等.基于低场核磁共振技术的酸化煤样孔隙特征研究[J].矿业安全与环保,2022,49(1):47-52. XIONG J L, WANG K, DU Q X, et al. Study on pore characteristics of acidified coal samples based on low field nuclear magnetic resonance technology[J]. Mining Safety & Environmental Protection, 2022, 49(1): 47-52 (in Chinese). [22] 邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990. DENG J L. The grey system theory tutorial[M]. Wuhan: Huazhong University of Science Press, 1990 (in Chinese) [23] 祝斯月,陈拴发,秦先涛,等.基于灰关联熵分析法的高粘改性沥青关键指标[J].材料科学与工程学报,2014,32(6):863-867. ZHU S Y, CHEN S F, QIN X T, et al. Key indexes of high viscosity modified asphalt based on grey correlation entropy analysis[J]. Journal of Materials Science and Engineering, 2014, 32(6): 863-867 (in Chinese). [24] 周长皓.水泥净浆和砂浆抗压强度与多尺度孔结构的关系研究[D].哈尔滨:哈尔滨工业大学,2020:28-30. ZHOU C H. Investigations on the relationships between compressive strength of cement pastes and mortars and their pore structure of multiscale characteristics[D]. Harbin: Harbin Institute of Technology, 2020: 28-30 (in Chinese). |