硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (1): 133-143.
所属专题: 资源综合利用
冯春花, 陈钰, 黄益宏, 郭晖, 朱建平
收稿日期:
2022-08-08
修订日期:
2022-09-29
出版日期:
2023-01-15
发布日期:
2023-02-15
作者简介:
冯春花(1983—),女,博士,副教授。主要从事绿色建材及固废综合利用等方面的研究。E-mail:fengchunhua@hpu.edu.cn
基金资助:
FENG Chunhua, CHEN Yu, HUANG Yihong, GUO Hui, ZHU Jianping
Received:
2022-08-08
Revised:
2022-09-29
Online:
2023-01-15
Published:
2023-02-15
摘要: 煤矸石作为煤炭开采和洗煤过程中产生的废弃物,大量堆放会给生态环境带来巨大的压力,以煤矸石为骨料生产混凝土符合绿色可持续发展理念。煤矸石骨料具有孔隙率大、针片状颗粒含量高的特性,会对混凝土性能产生较大负面影响。本文简述了煤矸石骨料的基本物化特性,综述了煤矸石骨料对混凝土工作性能、力学性能、耐久性以及界面过渡区的影响;在此基础上,针对煤矸石骨料存在的缺陷,重点综述了煤矸石骨料改性技术(表面包覆、水玻璃改性、热活化和微生物矿化等技术)的研究现状,指出了每种改性技术目前存在的问题及解决方法,并对其在混凝土中的研究方向进行了展望,以期推动煤矸石骨料在混凝土的应用与发展。
中图分类号:
冯春花, 陈钰, 黄益宏, 郭晖, 朱建平. 煤矸石骨料及其改性技术研究进展[J]. 硅酸盐通报, 2023, 42(1): 133-143.
FENG Chunhua, CHEN Yu, HUANG Yihong, GUO Hui, ZHU Jianping. Research Progress on Coal Gangue Aggregate and Its Modification Technology[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(1): 133-143.
[1] 周 楠,姚依南,宋卫剑,等.煤矿矸石处理技术现状与展望[J].采矿与安全工程学报,2020,37(1):136-146. ZHOU N, YAO Y N, SONG W J, et al. Present situation and prospect of coal gangue treatment technology[J]. Journal of Mining & Safety Engineering, 2020, 37(1): 136-146 (in Chinese). [2] 杨方亮,许红娜.“十四五”煤炭行业生态环境保护与资源综合利用发展路径分析[J].中国煤炭,2021,47(5):73-82. YANG F L, XU H N. Analysis on the development path of ecological environment protection and resources comprehensive utilization in coal industry during the 14th Five-Year Plan period[J]. China Coal, 2021, 47(5): 73-82 (in Chinese). [3] GONG P, MA Z G, NI X Y, et al. An experimental investigation on the mechanical properties of gangue concrete as a roadside support body material for backfilling gob-side entry retaining[J]. Advances in Materials Science and Engineering, 2018, 2018: 1326053. [4] 李先海,程 伟,韦世琪,等.贵州某煤矸石矿物学特征及胶凝活性激发研究[J].非金属矿,2021,44(6):1-4. LI X H, CHENG W, WEI S Q, et al. Study on mineralogical characteristics and cementitious activity stimulation of a gangue from Guizhou Province[J]. Non-Metallic Mines, 2021, 44(6): 1-4 (in Chinese). [5] LI Y F, LIU S H, GUAN X M. Multitechnique investigation of concrete with coal gangue[J]. Construction and Building Materials, 2021, 301: 124114. [6] 王 亮,王志伟.煤矸石细骨料混凝土强度及耐久性能研究[J].混凝土,2018(3):153-155. WANG L, WANG Z W. Study on the strength and durability of coal gangue fine aggregate concrete[J]. Concrete, 2018(3): 153-155 (in Chinese). [7] HUANG Y L, ZHOU A. Study on mechanical properties of PET fiber-reinforced coal gangue fine aggregate concrete[J]. Geofluids, 2021, 2021: 6627447. [8] ZHOU M, DOU Y W, ZHANG Y Z, et al. Effects of the variety and content of coal gangue coarse aggregate on the mechanical properties of concrete[J]. Construction and Building Materials, 2019, 220: 386-395. [9] 朱红光,霍青杰,倪亚东,等.煤矸石细集料-矿渣混凝土抗压强度与抗冻性能研究[J].材料导报,2021,35(22):22085-22091. ZHU H G, HUO Q J, NI Y D, et al. Study on compressive strength and frost resistance of coal gangue fine aggregate-slag cement-based concrete[J]. Materials Reports, 2021, 35(22): 22085-22091 (in Chinese). [10] 白国良,刘瀚卿,刘 辉,等.煤矸石理化特性及其对混凝土强度的影响[J].建筑结构学报,2022,43(2):1-12. BAI G L, LIU H Q, LIU H, et al. Physicochemical properties of coal gangue and its influence on concrete strength[J]. Journal of Building Structures, 2022, 43(2): 1-12 (in Chinese). [11] ZHANG Y Z, WANG Q H, ZHOU M, et al. Mechanical properties of concrete with coarse spontaneous combustion gangue aggregate (SCGA): experimental investigation and prediction methodology[J]. Construction and Building Materials, 2020, 255: 119337. [12] 王爱国,朱愿愿,徐海燕,等.混凝土用煤矸石骨料的研究进展[J].硅酸盐通报,2019,38(7):2076-2086. WANG A G, ZHU Y Y, XU H Y, et al. Research progress on coal gangue aggregate for concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2076-2086 (in Chinese). [13] DONG Z C, XIA J W, FAN C, et al. Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar[J]. Construction and Building Materials, 2015, 100: 63-69. [14] QIU J S, ZHU M Y, ZHOU Y X, et al. Effect and mechanism of coal gangue concrete modification by fly ash[J]. Construction and Building Materials, 2021, 294: 123563. [15] 李永靖,邢 洋.煤矸石混凝土抗氯离子渗透实验研究[J].非金属矿,2016,39(2):11-13. LI Y J, XING Y. Experiment study on chloride ion penetration of coal gangue concrete[J]. Non-Metallic Mines, 2016, 39(2): 11-13 (in Chinese). [16] 高文志.煤矸石表面处理后做混凝土骨料的研究[D].淮南:安徽理工大学,2015:40-45. GAO W Z. Research on coal gangue after surface treatment as concrete aggregates[D]. Huainan: Anhui University of Science & Technology, 2015: 40-45 (in Chinese). [17] 温久然,刘小婷,刘开平,等.黏土质煤矸石强化技术研究[J].硅酸盐通报,2020,39(1):233-241. WEN J R, LIU X T, LIU K P, et al. Study on clay coal gangue strengthening technology[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(1): 233-241 (in Chinese). [18] WANG A G, LIU P, MO L W, et al. Mechanism of thermal activation on granular coal gangue and its impact on the performance of cement mortars[J]. Journal of Building Engineering, 2022, 45: 103616. [19] CAO Z, CAO Y D, DONG H J, et al. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue[J]. International Journal of Mineral Processing, 2016, 146: 23-28. [20] GAO S, ZHAO G H, GUO L H, et al. Utilization of coal gangue as coarse aggregates in structural concrete[J]. Construction and Building Materials, 2021, 268: 121212. [21] 周 梅,浦倍超,徐 秒,等.附加水及预湿时间对自燃煤矸石砂轻混凝土性能影响[J].硅酸盐通报,2013,32(12):2421-2426. ZHOU M, PU B C, XU M, et al. Effect of additional water and prewet time on the performance of spontaneous combustion gangue sand lightweight concrete[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(12): 2421-2426 (in Chinese). [22] 乔立冬,姚占全,王宗熙,等.煤矸石对混凝土宏微观性能的灰熵分析[J].排灌机械工程学报,2022,40(1):30-34+54. QIAO L D, YAO Z Q, WANG Z X, et al. Grey entropy analysis of coal gangue on macro and micro properties of concrete[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(1): 30-34+54 (in Chinese). [23] 马宏强,易 成,朱红光,等.煤矸石集料混凝土抗压强度及耐久性能[J].材料导报,2018,32(14):2390-2395. MA H Q, YI C, ZHU H G, et al. Compressive strength and durability of coal gangue aggregate concrete[J]. Materials Review, 2018, 32(14): 2390-2395 (in Chinese). [24] YAO Z S, FANG Y, KONG W H, et al. Experimental study on dynamic mechanical properties of coal gangue concrete[J]. Advances in Materials Science and Engineering, 2020, 2020: 8874191. [25] 刘翰卿,白国良,朱可凡,等.煤矸石粗骨料混凝土抗折强度试验研究[J].建筑材料学报,2022,25(7):1-9. LIU H Q, BAI G L, ZHU K F, et al. Experimental study on flexural strength of coal gangue coarse aggregate concrete[J]. Journal of Building Materials, 2022, 25(7): 1-9 (in Chinese). [26] ELICES M, ROCCO C G. Effect of aggregate size on the fracture and mechanical properties of a simple concrete[J]. Engineering Fracture Mechanics, 2008, 75(13): 3839-3851. [27] WANG Z S, ZHAO N. Influence of coal gangue aggregate grading on strength properties of concrete[J]. Wuhan University Journal of Natural Sciences, 2015, 20(1): 66-72. [28] YANG G W, ZHA W H. Experimental study on the strength of coal gangue aggregate concrete with basalt fiber[J]. Journal of Physics: Conference Series, 2022, 2185(1): 012059. [29] 李文龙.掺玻璃纤维粉煤灰煤矸石骨料混凝土强度与抗裂性能试验研究[J].建筑结构,2020,50(13):49-53. LI W L. Experimental study on strength and crack resistance of coal gangue aggregate concrete mixed with glass fiber and fly ash[J]. Building Structure, 2020, 50(13): 49-53 (in Chinese). [30] ZHU K, MA X W, YAO L Y, et al. Effect of polypropylene fiber on the strength and dry cracking of mortar with coal gangue aggregate[J]. Advances in Materials Science and Engineering, 2021, 2021: 6667851. [31] 邱继生,郑娟娟,关 虓,等.冻融环境下煤矸石混凝土毛细吸水性能[J].建筑材料学报,2017,20(6):881-886. QIU J S, ZHENG J J, GUAN X, et al. Capillary water absorption properties of coal gangue concrete under freezing-thawing circumstance[J]. Journal of Building Materials, 2017, 20(6): 881-886 (in Chinese). [32] 黄成洋.煤矸石取代粗集料的混凝土抗渗性和抗冻性研究[D].沈阳:沈阳建筑大学,2015:35-36. HUANG C Y. Research on anti-permeability and frost resistance of concrete whose coarse aggregate is replaced by coal gangue[D]. Shenyang: Shenyang Jianzhu University, 2015: 35-36 (in Chinese). [33] 刘 世,刘海卿,邢 粟.煤矸石混凝土水分传输及分布预测[J].硅酸盐通报,2018,37(3):786-791. LIU S, LIU H Q, XING S. Prediction of water transport and distribution of the gaugue concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(3): 786-791 (in Chinese). [34] 李永靖,邢 洋,张 旭,等.煤矸石骨料混凝土的耐久性试验研究[J].煤炭学报,2013,38(7):1215-1219. LI Y J, XING Y, ZHANG X, et al. Experimental study on the durability of the concrete with coal gangue aggregate[J]. Journal of China Coal Society, 2013, 38(7): 1215-1219 (in Chinese). [35] QIU J S, ZHOU Y X, VATIN N I, et al. Damage constitutive model of coal gangue concrete under freeze-thaw cycles[J]. Construction and Building Materials, 2020, 264: 120720. [36] 李霖皓,马昆林,龙广成,等.煤矸石作为骨料对不同水泥基材料耐久性影响[J].科学技术与工程,2019,19(1):227-235. LI L H, MA K L, LONG G C, et al. Effect of coal gangue as aggregate on the durability of cement-based materials[J]. Science Technology and Engineering, 2019, 19(1): 227-235 (in Chinese). [37] LUO D M, WANG Y, ZHANG S H, et al. Frost resistance of coal gangue aggregate concrete modified by steel fiber and slag powder[J]. Applied Sciences, 2020, 10(9): 3229. [38] 顾 云,张 彬.煤矸石集料混凝土工作与力学性能研究[J].混凝土,2019(7):71-73. GU Y, ZHANG B. Research of working and mechanical properties of coal gangue aggregate concrete[J]. Concrete, 2019(7): 71-73 (in Chinese). [39] 李永靖,岳玮琦,潘 铖,等.表面活化煤矸石集料水泥砂浆性能试验研究[J].非金属矿,2017,40(6):36-38. LI Y J, YUE W Q, PAN C, et al. Performance study of surface activated coal gangue gggregate gement mortar[J]. Non-Metallic Mines, 2017, 40(6): 36-38 (in Chinese). [40] 董作超.煤矸石集料混凝土的力学性能与抗碳化试验研究[D].徐州:中国矿业大学,2016:142-148. DONG Z C. Experimental study on mechanical properties and carbonation resistance of coal gangue aggregate concrete[D]. Xuzhou: China University of Mining and Technology, 2016: 142-148 (in Chinese). [41] 王 洋,胡凯伟.煤矸石混凝土碳化性能初步研究[J].粉煤灰综合利用,2015,28(5):3-6+18. WANG Y, HU K W. Preliminary study on the carbonization performance of coal gangue concrete[J]. Fly Ash Comprehensive Utilization, 2015, 28(5): 3-6+18 (in Chinese). [42] 李庆文,张向东,李桂秀,等.自燃煤矸石轻骨料混凝土碳化深度研究[J].环境工程学报,2016,10(5):2616-2620. LI Q W, ZHANG X D, LI G X, et al. Study on carbonation depth of spontaneous combustion coal gangue lightweight aggregate concrete[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2616-2620 (in Chinese). [43] 黄 燕,胡 翔,史才军,等.混凝土中水泥浆体与骨料界面过渡区的形成与改进综述[J/OL].材料导报,2023(1):1-22[2022-07-17].http://kns.cnki.net/kcms/detail/50.1078.TB.20211201.2349.002.html. HUANG Y, HU X, SHI C J, et al. Review on the formation and improvement of interfacial transition zone between cement paste and aggregate in concrete[J/OL]. Materials Reports, 2023(1):1-22 [2022-07-17]. http://kns.cnki.net/kcms/detail/50.1078.TB.20211201.2349.002.html (in Chinese). [44] 王 晴,冉 坤,王继博,等.自燃型煤矸石混凝土界面过渡区微观特性研究[J].混凝土,2021(8):69-71. WANG Q, RAN K, WANG J B, et al. Study on the microscopic properties of the interfacial transition zone in spontaneous combustion coal gangue concrete[J]. Concrete, 2021(8): 69-71 (in Chinese). [45] ELSHARIEF A, COHEN M D, OLEK J. Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone[J]. Cement and Concrete Research, 2003, 33(11): 1837-1849. [46] DIAMOND S, SAHU S, THAULOW N. Reaction products of densified silica fume agglomerates in concrete[J]. Cement and Concrete Research, 2004, 34(9): 1625-1632. [47] ZHANG Z Q, ZHANG B, YAN P Y. Comparative study of effect of raw and densified silica fume in the paste, mortar and concrete[J]. Construction and Building Materials, 2016, 105: 82-93. [48] 刘小婷,温久然,王思雨,等.原状煤矸石骨料强化工艺研究[J].无机盐工业,2020,52(4):65-71+78. LIU X T, WEN J R, WANG S Y, et al. Study on strengthening technology of raw coal gangue aggregate[J]. Inorganic Chemicals Industry, 2020, 52(4): 65-71+78 (in Chinese). [49] 程海丽,王彩彦.水玻璃对混凝土再生骨料的强化试验研究[J].新型建筑材料,2004,31(12):12-14. CHENG H L, WANG C Y. Strengthened experimental study on the recycled aggregate of concrete by water glass [J]. New Building Materials, 2004, 31(12): 12-14 (in Chinese). [50] PENG H, VAUGHAN J, VOGRIN J. The effect of thermal activation of kaolinite on its dissolution and re-precipitation as zeolites in alkaline aluminate solution[J]. Applied Clay Science, 2018, 157: 189-197. [51] LIU J X, YU Q B, ZUO Z L, et al. Reactivity and performance of dry granulation blast furnace slag cement[J]. Cement and Concrete Composites, 2019, 95: 19-24. [52] ZHANG C S. Pozzolanic activity of burned coal gangue and its effects on structure of cement mortar[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2006, 21(4): 150-153. [53] ZHU Y Y, ZHU Y C, WANG A G, et al. Valorization of calcined coal gangue as coarse aggregate in concrete[J]. Cement and Concrete Composites, 2021, 121: 104057. [54] YANG Q B, LÜ M X, LUO Y B. Effects of surface-activated coal gangue aggregates on properties of cement-based materials[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2013, 28(6): 1118-1121. [55] DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Geotechnique, 2013, 63(4): 287-301. [56] DE MUYNCK W, DE BELIE N, VERSTRAETE W. Microbial carbonate precipitation in construction materials: a review[J]. Ecological Engineering, 2010, 36(2): 118-136. [57] ZHONG L R, ISLAM M R. A new microbial plugging process and its impact on fracture remediation[C]//All Days. October 22-25, 1995. Dallas, Texas. SPE, 1995: 703-715. [58] FENG C H, CUI B W, HUANG Y, et al. Enhancement technologies of recycled aggregate-enhancement mechanism, influencing factors, improvement effects, technical difficulties, life cycle assessment[J]. Construction and Building Materials, 2022, 317: 126168. [59] FENG C H, CUI B W, GE H D, et al. Reinforcement of recycled aggregate by microbial-induced mineralization and deposition of calcium carbonate—influencing factors, mechanism and effect of reinforcement[J]. Crystals, 2021, 11(8): 887. [60] 朱亚光,戎丹萍,徐培蓁,等.供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J].材料导报,2021,35(4):4074-4078+4087. ZHU Y G, RONG D P, XU P Z, et al. Influence of oxygen supply agent concentration and soaking position on MICP recycled aggregate properties[J]. Materials Reports, 2021, 35(4): 4074-4078+4087 (in Chinese). [61] LI M, CHENG X H, GUO H X. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil[J]. International Biodeterioration & Biodegradation, 2013, 76: 81-85. [62] RAJASEKAR A, WILKINSON S, MOY C K S. MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: a review[J]. Environmental Science and Ecotechnology, 2021, 6: 100096. [63] HU L, WANG H Y, XU P, et al. Biomineralization of hypersaline produced water using microbially induced calcite precipitation[J]. Water Research, 2021, 190: 116753. [64] DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. [65] DE MUYNCK W, DEBROUWER D, DE BELIE N, et al. Bacterial carbonate precipitation improves the durability of cementitious materials[J]. Cement and Concrete Research, 2008, 38(7): 1005-1014. [66] ZHANG R, WU K, JIANG Z W, et al. Bacterially induced CaCO3 precipitation for the enhancement of quality of coal gangue[J]. Construction and Building Materials, 2022, 319: 126102. [67] 孙克庆.水玻璃浸泡对混合再生混凝土的强度影响[D].淮南:安徽理工大学,2019:38-48. SUN K Q. The influence of strength by sock the mixture recycled aggregate in the cement silicate solution[D]. Huainan: Anhui University of Science & Technology, 2019: 38-48 (in Chinese). |
[1] | 陈娅, 万小梅, 崔允铮, 李辉. 纤维表面改性对EGC力学性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1174-1182. |
[2] | 齐晓, 肖前慧, 邱继生, 刘书林. 冻融循环与硫酸盐侵蚀共同作用下再生混凝土的微观结构研究[J]. 硅酸盐通报, 2023, 42(4): 1194-1204. |
[3] | 殷实, 李北星, 陈鹏博, 金德川. 再生砂混凝土毛细吸水特性研究[J]. 硅酸盐通报, 2023, 42(4): 1205-1216. |
[4] | 陈春红, 俞江, 刘荣桂, 王磊, 刘惠, 伍金龙. 干湿循环下再生细骨料混凝土的氯离子渗透性能[J]. 硅酸盐通报, 2023, 42(4): 1217-1225. |
[5] | 郭毅松, 刘乐冕, 陈剑锋. 油茶粕绿色发泡剂制备泡沫混凝土的试验研究[J]. 硅酸盐通报, 2023, 42(4): 1226-1232. |
[6] | 周程涛, 陈波, 高志涵. 冻融环境下泡沫混凝土的单轴压缩特性[J]. 硅酸盐通报, 2023, 42(4): 1233-1241. |
[7] | 丁超, 贾子杰, 王振华, 丁玉贤. 基于生命周期评价的UHPC碳排放控制潜力评估[J]. 硅酸盐通报, 2023, 42(4): 1242-1251. |
[8] | 张虹宇, 郑玉龙, 陆春华. 两种养护制度下C100高强混凝土韧性对比试验研究[J]. 硅酸盐通报, 2023, 42(4): 1252-1259. |
[9] | 张劲竹, 刘华新, 王家贺, 柳根金, 王学志. 混杂纤维混凝土高温后性能劣化分析与强度预测[J]. 硅酸盐通报, 2023, 42(4): 1260-1269. |
[10] | 曹军平, 朱健, 高镇. 基于正交试验的EPS轻型混凝土配合比设计及性能研究[J]. 硅酸盐通报, 2023, 42(4): 1270-1281. |
[11] | 石建军, 许新春, 张志恒, 禹博, 钟海峰, 杨昭, 周铭, 李景阳. 不同产地防中子辐射蛇纹石骨料混凝土比选[J]. 硅酸盐通报, 2023, 42(4): 1282-1290. |
[12] | 姜晓丹, 孙梦琪, 刘昂, 王攀, 侯东帅. 碳化对环氧树脂与混凝土界面黏结性能影响的分子模拟研究[J]. 硅酸盐通报, 2023, 42(4): 1291-1297. |
[13] | 汪凯, 燕远岭, 赵哲, 张杯, 李致坤. 界面过渡区与骨料特征对混凝土强度及变形影响的数值模拟研究[J]. 硅酸盐通报, 2023, 42(4): 1298-1308. |
[14] | 胡彪, 李先海, 晏祥政, 赵永庆. 热活化煤矸石粉对基体-骨料界面过渡区性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1315-1322. |
[15] | 张先伟, 高永红, 王平, 李江山, 刘世宇, 郎雷, 雷学文. 电解锰渣-生活垃圾焚烧底渣协同制备路面基层材料试验研究[J]. 硅酸盐通报, 2023, 42(4): 1363-1373. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||