硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (1): 1-21.
所属专题: 水泥混凝土
• 水泥混凝土 • 下一篇
徐宁1,2, 杨恒1,2, 熊传胜3, 张栋1,2, 蒋鹏1,2, 刘璨1,2, 刘欣昕1,2, 程星燎1,2
收稿日期:
2022-09-01
修订日期:
2022-10-13
出版日期:
2023-01-15
发布日期:
2023-02-15
通信作者:
杨 恒,博士,工程师。E-mail:hengyang@nhri.cn
作者简介:
徐 宁(1981—),男,博士,高级工程师。主要从事钢筋混凝土腐蚀与防护方面的研究。E-mail:nxu@nhri.cn
基金资助:
XU Ning1,2, YANG Heng1,2, XIONG Chuansheng3, ZHANG Dong1,2, JIANG Peng1,2, LIU Can1,2, LIU Xinxin1,2, CHENG Xingliao1,2
Received:
2022-09-01
Revised:
2022-10-13
Online:
2023-01-15
Published:
2023-02-15
摘要: 在钢筋混凝土结构服役过程中,由环境侵蚀因素导致的耐久性问题是制约结构长效服役的重要原因,其中,氯离子侵蚀导致的钢筋锈蚀是引起钢筋混凝土耐久性劣化的主要因素之一。在混凝土内掺加防腐添加剂,可从促进钢筋表面成膜和改善混凝土自身性能(孔隙结构、水化过程、Friedel’s盐生成)等方面提升阻锈能力,近年来逐渐成为研究热点。本文将防腐添加剂分为传统阻锈剂、绿色植物提取物阻锈剂、纳米材料以及矿物掺合料等四类,从材料开发、作用机制、阻锈影响因素等方面对防腐添加剂的研究进行了综述。最后,探讨了防腐添加剂研究中存在的问题,并对未来的研究提出了建议,以期为防腐添加剂能够更好地防治混凝土中的钢筋锈蚀问题提供参考。
中图分类号:
徐宁, 杨恒, 熊传胜, 张栋, 蒋鹏, 刘璨, 刘欣昕, 程星燎. 钢筋混凝土中防腐添加剂的研究进展[J]. 硅酸盐通报, 2023, 42(1): 1-21.
XU Ning, YANG Heng, XIONG Chuansheng, ZHANG Dong, JIANG Peng, LIU Can, LIU Xinxin, CHENG Xingliao. Research Progress of Anti-Corrosion Additives in Reinforced Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(1): 1-21.
[1] ETTEYEB N, DHOUIBI L, TAKENOUTI H, et al. Protection of reinforcement steel corrosion by phenylphosphonic acid pre-treatment PART II: tests in mortar medium[J]. Cement and Concrete Composites, 2016, 65: 94-100. [2] ETTEYEB N, DHOUIBI L, TAKENOUTI H, et al. Protection of reinforcement steel corrosion by phenyl phosphonic acid pre-treatment PART I: tests in solutions simulating the electrolyte in the pores of fresh concrete[J]. Cement and Concrete Composites, 2015, 55: 241-249. [3] DJERBI A, BONNET S, KHELIDJ A, et al. Influence of traversing crack on chloride diffusion into concrete[J]. Cement and Concrete Research, 2008, 38(6): 877-883. [4] MING X, CAI Y Q, LI Z J. Atomic scale insight into the mechanisms of chloride induced steel corrosion in concrete[J]. Construction and Building Materials, 2022, 351: 128811. [5] VIDAL T, CASTEL A, FRANÇOIS R. Corrosion process and structural performance of a 17 year old reinforced concrete beam stored in chloride environment[J]. Cement and Concrete Research, 2007, 37(11): 1551-1561. [6] SHEHNAZDEEP, PRADHAN B. A study on effectiveness of inorganic and organic corrosion inhibitors on rebar corrosion in concrete: a review[J]. Materials Today: Proceedings, 2022, 65: 1360-1366. [7] 潘崇根,杨小草,徐 强,等.阻锈剂在海洋工程高性能混凝土中的研究进展[J].材料导报,2013,27(21):97-100+138. PAN C G, YANG X C, XU Q, et al. Development of corrosion inhibitor with high-performance concrete used in ocean engineering[J]. Materials Reports, 2013, 27(21): 97-100+138 (in Chinese). [8] WANG W Y, SONG Z J, GUO M Z, et al. Employing ginger extract as an eco-friendly corrosion inhibitor in cementitious materials[J]. Construction and Building Materials, 2019, 228: 116713. [9] 肖 佳,郭明磊,王大富,等.基于不同阳离子条件下硅酸盐水泥氯离子固化性能研究[J].硅酸盐通报,2016,35(9):2956-2961. XIAO J, GUO M L, WANG D F, et al. Chloride binding capacity of Portland cement under the condition of different cations[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(9): 2956-2961 (in Chinese). [10] UTHAMAN S, VISHWAKARMA V, GEORGE R P, et al. Enhancement of strength and durability of fly ash concrete in seawater environments: synergistic effect of nanoparticles[J]. Construction and Building Materials, 2018, 187: 448-459. [11] 余红发,翁智财,孙 伟,等.矿渣掺量对混凝土氯离子结合能力的影响[J].硅酸盐学报,2007,35(6):801-806. YU H F, WENG Z C, SUN W, et al. Influences of slag content on chlorine ion binding capacity of concrete[J]. Journal of the Chinese Ceramic Society, 2007, 35(6): 801-806 (in Chinese). [12] 廖灵青.大掺量矿物掺合料混凝土抗氯盐侵蚀性能研究[D].南宁:广西大学,2016. LIAO L Q. Research on the performance of resistance to chloride ion erosion of the concrete with high volume mineral admixtures[D]. Nanning: Guangxi University, 2016 (in Chinese). [13] HU X, POON C S. Chloride-related steel corrosion initiation in cement paste prepared with the incorporation of blast-furnace slag[J]. Cement and Concrete Composites, 2022, 126: 104349. [14] WANG S H, JIN H X, DENG Y, et al. Comprehensive utilization status of red mud in China: a critical review[J]. Journal of Cleaner Production, 2021, 289: 125136. [15] SHI J J, LI M, WU M, et al. Role of red mud in natural passivation and chloride-induced depassivation of reinforcing steels in alkaline concrete pore solutions[J]. Corrosion Science, 2021, 190: 109669. [16] SHI J J, GUAN X D, MING J, et al. Improved corrosion resistance of reinforcing steel in mortars containing red mud after long-term exposure to aggressive environments[J]. Cement and Concrete Composites, 2022, 130: 104522. [17] DANIYAL M, AKHTAR S, AZAM A. Effect of nano-TiO2 on the properties of cementitious composites under different exposure environments[J]. Journal of Materials Research and Technology, 2019, 8(6): 6158-6172. [18] VITHARANA M G, PAUL S C, KONG S Y, et al. A study on strength and corrosion protection of cement mortar with the inclusion of nanomaterials[J]. Sustainable Materials and Technologies, 2020, 25: e00192. [19] AATTACHE A. Properties and durability of partially replaced cement-based composite mortars co-using powders of a nanosilica superplasticiser and finely ground plastic waste[J]. Journal of Building Engineering, 2022, 51: 104257. [20] HARILAL M, RATHISH V R, ANANDKUMAR B, et al. High performance green concrete (HPGC) with improved strength and chloride ion penetration resistance by synergistic action of fly ash, nanoparticles and corrosion inhibitor[J]. Construction and Building Materials, 2019, 198: 299-312. [21] HARILAL M, KAMDE D K, UTHAMAN S, et al. The chloride-induced corrosion of a fly ash concrete with nanoparticles and corrosion inhibitor[J]. Construction and Building Materials, 2021, 274: 122097. [22] LONG W J, ZHANG X H, FENG G L, et al. Investigation on chloride binding capacity and stability of Friedel’s salt in graphene oxide reinforced cement paste[J]. Cement and Concrete Composites, 2022, 132: 104603. [23] ASAAD M A, ISMAIL M, TAHIR M M, et al. Enhanced corrosion resistance of reinforced concrete: role of emerging eco-friendly Elaeis guineensis/silver nanoparticles inhibitor[J]. Construction and Building Materials, 2018, 188: 555-568. [24] 金伟良,赵羽习.混凝土结构耐久性[M].2版.北京:科学出版社,2014:126-127. JIN W L, ZHAO Y X. Durability of concrete structures[M]. 2nd ed. Beijing: Science Press, 2014: 126-127 (in Chinese). [25] 刘晓敏,宋光铃,林海潮,等.混凝土中钢筋腐蚀破坏的研究概况[J].材料保护,1996(6):16-19. LIU X M, SONG G L, LIN H C, et al. Research survey of corrosion damage of reinforcement in concrete[J]. Materiais Protection, 1996(6): 16-19 (in Chinese). [26] 吴 淼.钼酸盐阻锈剂对钢筋耐蚀性能影响研究[D].南京:东南大学,2021. WU M. Effect of molybdate as a corrosion inhibitor on corrosion resistance of reinforcing steels[D]. Nanjing: Southeast University, 2021 (in Chinese). [27] 乔 冰.氯离子对钢筋腐蚀行为的影响及其缓蚀剂的研究[D].厦门:厦门大学,2009. QIAO B. Study on the effect of chloride ions on the corrosion behavior of reinforing steel and corrosion inhibitors[D]. Xiamen: Xiamen University, 2009 (in Chinese). [28] TEYMOURI F, SAMIEI I, ALLAHKARAM S R, et al. Passive film alteration of reinforcing steel through[MoO2-4]/[RCOO-] interfacial co-interaction for enhanced corrosion resistance in chloride contaminated concrete pore solution[J]. Journal of Molecular Liquids, 2022, 356: 119060. [29] ZHANG B, WANG J, WU B, et al. Unmasking chloride attack on the passive film of metals[J]. Nature Communications, 2018, 9: 2559. [30] 卢 木,王濮信,卢金勇.混凝土中钢筋锈蚀的研究现状[J].混凝土,2000(2):37-41+27. LU M, WANG P X, LU J Y. State of the art of reinforcement corrosion studies[J]. Concrete, 2000(2): 37-41+27 (in Chinese). [31] YANG H, LI W H, LIU X Y, et al. Preparation of corrosion inhibitor loaded zeolites and corrosion resistance of carbon steel in simulated concrete pore solution[J]. Construction and Building Materials, 2019, 225: 90-98. [32] YANG H, XIONG C S, LIU X Y, et al. Application of layered double hydroxides (LDHs) in corrosion resistance of reinforced concrete-state of the art[J]. Construction and Building Materials, 2021, 307: 124991. [33] YANG H, XIONG C S, LIU A, et al. The effect of layered double hydroxides intercalated with vitamin B3 on the mechanical properties, hydration and pore structure of cement-based materials[J]. Materials Letters, 2021, 300: 130228. [34] DAS J K, PRADHAN B. Study on influence of nitrite and phosphate based inhibiting admixtures on chloride interaction, rebar corrosion, and microstructure of concrete subjected to different chloride exposures[J]. Journal of Building Engineering, 2022, 50: 104192. [35] WU M, SHI J J. Beneficial and detrimental impacts of molybdate on corrosion resistance of steels in alkaline concrete pore solution with high chloride contamination[J]. Corrosion Science, 2021, 183: 109326. [36] VERBRUGGEN H, TERRYN H, DE GRAEVE I. Inhibitor evaluation in different simulated concrete pore solution for the protection of steel rebars[J]. Construction and Building Materials, 2016, 124: 887-896. [37] SHI J J, WU M, MING J. In-depth insight into the role of molybdate in corrosion resistance of reinforcing steel in chloride-contaminated mortars[J]. Cement and Concrete Composites, 2022, 132: 104628. [38] NGALA V T, PAGE C L, PAGE M M. Corrosion inhibitor systems for remedial treatment of reinforced concrete. Part 2: sodium monofluorophosphate[J]. Corrosion Science, 2003, 45(7): 1523-1537. [39] BASTIDAS D M, CRIADO M, LA IGLESIA V M, et al. Comparative study of three sodium phosphates as corrosion inhibitors for steel reinforcements[J]. Cement and Concrete Composites, 2013, 43: 31-38. [40] 杜荣归,胡融刚,胡 仁,等.若干无机缓蚀剂对混凝土中钢筋的阻锈作用[J].厦门大学学报(自然科学版),2001,40(4):908-913. DU R G, HU R G, HU R, et al. The effects of some inorganic corrosion inhibitors on reinforcing steel in concrete[J]. Journal of Xiamen University (Natural Science), 2001, 40(4): 908-913 (in Chinese). [41] KHOMAMI M N, DANAEE I, ATTAR A A, et al. Kinetic and thermodynamic studies of AISI 4130 steel alloy corrosion in ethylene glycol-water mixture in presence of inhibitors[J]. Metals and Materials International, 2013, 19(3): 453-464. [42] WU M, MA H F, SHI J J. Beneficial and detrimental effects of molybdate as an inhibitor on reinforcing steels in saturated Ca(OH)2 solution: spontaneous passivation[J]. Cement and Concrete Composites, 2021, 116: 103887. [43] LIN B, ZUO Y. Inhibition of Q235 carbon steel by calcium lignosulfonate and sodium molybdate in carbonated concrete pore solution[J]. Molecules (Basel, Switzerland), 2019, 24(3): 518. [44] ZHOU Y, ZUO Y. The inhibitive mechanisms of nitrite and molybdate anions on initiation and propagation of pitting corrosion for mild steel in chloride solution[J]. Applied Surface Science, 2015, 353: 924-932. [45] DONKOR S, SONG Z J, JIANG L H, et al. An overview of computational and theoretical studies on analyzing adsorption performance of phytochemicals as metal corrosion inhibitors[J]. Journal of Molecular Liquids, 2022, 359: 119260. [46] ZHI F F, JIANG L H, JIN M, et al. Inhibition effect and mechanism of polyacrylamide for steel corrosion in simulated concrete pore solution[J]. Construction and Building Materials, 2020, 259: 120425. [47] RYU H S, SINGH J K, YANG H M, et al. Evaluation of corrosion resistance properties of N,N′-dimethyl ethanolamine corrosion inhibitor in saturated Ca(OH)2 solution with different concentrations of chloride ions by electrochemical experiments[J]. Construction and Building Materials, 2016, 114: 223-231. [48] 麻福斌.醇胺类迁移型阻锈剂对海洋钢筋混凝土的防腐蚀机理[D].青岛:中国科学院研究生院(海洋研究所),2015. MA F B. On the mechanism of amino alcohol based migrating corrosion inhibitors for marine reinforced concrete[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2015 (in Chinese). [49] 费飞龙.新型电迁移性阻锈剂的研制及其阻锈效果与机理的研究[D].广州:华南理工大学,2015. FEI F L. The investigation on the preparation of a tailored electro-migrating corrosion inhibitor and its corrosion inhibition performance and mechanism[D]. Guangzhou: South China University of Technology, 2015 (in Chinese). [50] BARAKAT M M, DEYAB M A, NESSIM M I, et al. The controlling role of new imidazole-based ionic liquids on the corrosion rate of steel rebars in the cement pore solution[J]. Journal of Molecular Liquids, 2021, 329: 115442. [51] 田惠文.环境友好型钢筋阻锈剂的防腐性能和机理研究[D].青岛:中国科学院研究生院(海洋研究所),2012. TIAN H W. Study on the anti-corrosion performance and mechanism of the environment-friendly corrosion inhibitor for reinforcing steel bar[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2012 (in Chinese). [52] XU Q Q, HOU D S, ZHANG H L, et al. Understanding the effect of vitamin B3, B6 and C as a corrosion inhibitor on the ordinary Portland cement hydration: experiments and DFT study[J]. Construction and Building Materials, 2022, 331: 127294. [53] 周霄骋,穆 松,蔡景顺,等.复合羧酸胺阻锈剂对氯盐侵蚀下钢筋锈蚀的抑制作用[J].新型建筑材料,2021,48(9):13-17+26. ZHOU X C, MU S, CAI J S, et al. The inhibiting effect of a compound carboxylic acid amine inhibitor on the corrosion of steel bar under chloride[J]. New Building Materials, 2021, 48(9): 13-17+26 (in Chinese). [54] JAMIL H E, SHRIRI A, BOULIF R, et al. Electrochemical behaviour of amino alcohol-based inhibitors used to control corrosion of reinforcing steel[J]. Electrochimica Acta, 2004, 49(17/18): 2753-2760. [55] 周霄骋,穆 松,马 麒,等.混凝土模拟孔溶液中有机钢筋阻锈剂的加速评价及等效性分析[J].硅酸盐学报,2021,49(8):1713-1721. ZHOU X C, MU S, MA Q, et al. Accelerated evaluation of organic steel corrosion inhibitor in simulated pore solution of concrete and its equivalence analysis[J]. Journal of the Chinese Ceramic Society, 2021, 49(8): 1713-1721 (in Chinese). [56] 施锦杰,孙 伟.苯并三唑对模拟混凝土孔溶液中钢筋的阻锈作用[J].功能材料,2010,41(12):2147-2150. SHI J J, SUN W. Study of benzotriazole as corrosion inhibitor of reinforcing steel in simulated concrete pore solution[J]. Journal of Functional Materials, 2010, 41(12): 2147-2150 (in Chinese). [57] 施锦杰,孙 伟.苯并三唑对水泥砂浆中钢筋的阻锈作用[J].物理化学学报,2011,27(6):1457-1466. SHI J J, SUN W. Effect of benzotriazole as corrosion inhibitor for reinforcing steel in cement mortar[J]. Acta Physico-Chimica Sinica, 2011, 27(6): 1457-1466 (in Chinese). [58] WANG Y S, ZUO Y. The adsorption and inhibition behavior of two organic inhibitors for carbon steel in simulated concrete pore solution[J]. Corrosion Science, 2017, 118: 24-30. [59] WANG Y S, ZUO Y, ZHAO X H, et al. The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution[J]. Applied Surface Science, 2016, 379: 98-110. [60] 杨圣和,田惠文,侯保荣,等.海洋环境友好型阻锈剂的筛选和快速评价[J].海洋科学,2012,36(8):1-8. YANG S H, TIAN H W, HOU B R, et al. Selection and rapid evaluation of marine environment-friendly corrosion inhibitors[J]. Marine Sciences, 2012, 36(8): 1-8 (in Chinese). [61] VALEK L, MARTINEZ S, MIKULIĆ D, et al. The inhibition activity of ascorbic acid towards corrosion of steel in alkaline media containing chloride ions[J]. Corrosion Science, 2008, 50(9): 2705-2709. [62] ZHAO Y Z, PAN T, YU X T, et al. Corrosion inhibition efficiency of triethanolammonium dodecylbenzene sulfonate on Q235 carbon steel in simulated concrete pore solution[J]. Corrosion Science, 2019, 158: 108097. [63] 唐 诗,汤雁冰,王胜年,等.氨基醇阻锈剂对钢筋表面钝化膜性能的影响[J].材料保护,2016,49(3):20-22+7. TANG S, TANG Y B, WANG S N, et al. Influence of alkamine inhibitor on the passive films of rebar[J]. Materials Protection, 2016, 49(3): 20-22+7 (in Chinese). [64] 王晓彤,孙丛涛,程火焰.氨基醇类阻锈剂的阻锈机理[J].硅酸盐通报,2017,36(1):84-88. WANG X T, SUN C T, CHENG H Y. Inhibition mechanism of amino alcohol corrosion inhibitors[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(1): 84-88 (in Chinese). [65] LIU Y Q, SONG Z J, WANG W Y, et al. Effect of ginger extract as green inhibitor on chloride-induced corrosion of carbon steel in simulated concrete pore solutions[J]. Journal of Cleaner Production, 2019, 214: 298-307. [66] LIU Q Y, SONG Z J, HAN H, et al. A novel green reinforcement corrosion inhibitor extracted from waste Platanus acerifolia leaves[J]. Construction and Building Materials, 2020, 260: 119695. [67] SONG Z J, CAI H C, LIU Q Y, et al. Performance of corrosion inhibitor extracted from enzymatic hydrolysate of waste Platanus acerifolia leaves[J]. Journal of Industrial and Engineering Chemistry, 2022, 111: 464-479. [68] PALANISAMY S P, MAHESWARAN G, SELVARANI A G, et al. Ricinus communis—A green extract for the improvement of anti-corrosion and mechanical properties of reinforcing steel in concrete in chloride media[J]. Journal of Building Engineering, 2018, 19: 376-383. [69] JIANG S B, JIANG L H, WANG Z Y, et al. Deoxyribonucleic acid as an inhibitor for chloride-induced corrosion of reinforcing steel in simulated concrete pore solutions[J]. Construction and Building Materials, 2017, 150: 238-247. [70] JIANG S B, GAO S, JIANG L H, et al. Effects of deoxyribonucleic acid on cement paste properties and chloride-induced corrosion of reinforcing steel in cement mortars[J]. Cement and Concrete Composites, 2018, 91: 87-96. [71] PRADIPTA I, KONG D, TAN J B L. Natural organic antioxidants from green tea inhibit corrosion of steel reinforcing bars embedded in mortar[J]. Construction and Building Materials, 2019, 227: 117058. [72] ASIPITA S A, ISMAIL M, MAJID M Z A, et al. Green Bambusa Arundinacea leaves extract as a sustainable corrosion inhibitor in steel reinforced concrete[J]. Journal of Cleaner Production, 2014, 67: 139-146. [73] ZHANG Z C, BA H J, WU Z Y. Sustainable corrosion inhibitor for steel in simulated concrete pore solution by maize gluten meal extract: electrochemical and adsorption behavior studies[J]. Construction and Building Materials, 2019, 227: 117080. [74] MARTINEZ S, VALEK L, OSLAKOVC I S. Adsorption of organic anions on low-carbon steel in saturated Ca(OH)2 and the HSAB principle[J]. Journal of the Electrochemical Society, 2007, 154: 671-677. [75] BRIBRI A E, TABYAOUI M, TABYAOUI B, et al. The use of Euphorbia falcata extract as eco-friendly corrosion inhibitor of carbon steel in hydrochloric acid solution[J]. Materials Chemistry and Physics, 2013, 141(1): 240-247. [76] OGUZIE E E, IHEABUNIKE Z O, OGUZIE K L, et al. Corrosion inhibiting effect of aframomum melegueta extracts and adsorption characteristics of the active constituents on mild steel in acidic media[J]. Journal of Dispersion Science and Technology, 2013, 34(4): 516-527. [77] KANWAL M, KHUSHNOOD R A, SHAHID M, et al. An integrated and eco-friendly approach for corrosion inhibition and microstructural densification of reinforced concrete by immobilizing Bacillus subtilis in pyrolytic sugarcane-bagasse[J]. Journal of Cleaner Production, 2022, 355: 131785. [78] WANG D Q, MING J, SHI J J. Enhanced corrosion resistance of rebar in carbonated concrete pore solutions by Na2HPO4 and benzotriazole[J]. Corrosion Science, 2020, 174: 108830. [79] HARILAL M, UTHAMAN S, ANANDKUMAR B, et al. Fungal resistance of nanomodifiers and corrosion inhibitor amended fly ash concrete[J]. International Biodeterioration & Biodegradation, 2019, 143: 104725. [80] MUTHULINGAM S, RAO B N. Chloride binding and time-dependent surface chloride content models for fly ash concrete[J]. Frontiers of Structural and Civil Engineering, 2016, 10(1): 112-120. [81] 卢一亭,余红发,马好霞,等.海洋环境下混凝土自由氯离子扩散系数试验[J].建筑科学与工程学报,2011,28(4):86-91. LU Y T, YU H F, MA H X, et al. Experiment on free chloride diffusion coefficient of concrete exposed to marine environment[J]. Journal of Architecture and Civil Engineering, 2011, 28(4): 86-91 (in Chinese). [82] 黄政宇,李 涛.超高性能混凝土基体中氯离子结合特性的研究[J].铁道科学与工程学报,2016,13(10):1912-1918. HUANG Z Y, LI T. Study of chloride binding property in ultra high performance concrete matrix[J]. Journal of Railway Science and Engineering, 2016, 13(10): 1912-1918 (in Chinese). [83] WANG Y Y, SHUI Z H, GAO X, et al. Understanding the chloride binding and diffusion behaviors of marine concrete based on Portland limestone cement-alumina enriched pozzolans[J]. Construction and Building Materials, 2019, 198: 207-217. [84] SHI Z G, GEIKER M R, DE WEERDT K, et al. Role of calcium on chloride binding in hydrated Portland cement-metakaolin-limestone blends[J]. Cement and Concrete Research, 2017, 95: 205-216. [85] CHEEWAKET T, JATURAPITAKKUL C, CHALEE W. Long term performance of chloride binding capacity in fly ash concrete in a marine environment[J]. Construction and Building Materials, 2010, 24(8): 1352-1357. [86] 张腾腾,王传林,张宇轩,等.粉煤灰掺量对海水海砂高性能混凝土性能的影响[J].硅酸盐通报,2022,41(5):1677-1688. ZHANG T T, WANG C L, ZHANG Y X, et al. Effect of fly ash content on performance of high performance concrete with seawater and sea sand[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1677-1688 (in Chinese). [87] EL-CHABIB H, IBRAHIM A. The performance of high-strength flowable concrete made with binary, ternary, or quaternary binder in hot climate[J]. Construction and Building Materials, 2013, 47: 245-253. [88] WONGKEO W, THONGSANITGARN P, NGAMJARUROJANA A, et al. Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume[J]. Materials & Design, 2014, 64: 261-269. [89] 赵顺湖,包先诚,杨新社,等.矿渣粉对混凝土的性能及耐久性影响试验研究[J].混凝土,2010(10):73-75. ZHAO S H, BAO X C, YANG X S, et al. Influences of ground granulated blast furnace slag on the performances and durability of concrete[J]. Concrete, 2010(10): 73-75 (in Chinese). [90] 黎鹏平,苏达根,王胜年,等.掺合料对胶凝材料水化热及混凝土氯离子扩散系数的影响[J].水运工程,2009(11):6-10+64. LI P P, SU D G, WANG S N, et al. Influence of mineral admixtures on hydration heat of paste and chloride diffusion coefficient in concrete[J]. Port & Waterway Engineering, 2009(11): 6-10+64 (in Chinese). [91] 李 东,朱月圆,耿 健,等.矿物掺合料和CLDH对水泥基材料氯离子固化性能研究[J].西安建筑科技大学学报(自然科学版),2019,51(3):344-349. LI D, ZHU Y Y, GENG J, et al. A study on curing charateristics of chloride ions binding in cement based materials with mineral admixture and CLDH[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2019, 51(3): 344-349 (in Chinese). [92] TANG W C, WANG Z, DONNE S W, et al. Influence of red mud on mechanical and durability performance of self-compacting concrete[J]. Journal of Hazardous Materials, 2019, 379: 120802. [93] COLLAZO A, CRISTÓBAL M, NÓVOA X, et al. Electrochemical impedance spectroscopy as a tool for studying steel corrosion inhibition in simulated concrete environments—red mud used as rebar corrosion inhibitor[J]. Journal of Astm International, 2006, 3: 1-10. [94] KOLEVA D A, BOSHKOV N, VAN BREUGEL K, et al. Steel corrosion resistance in model solutions, containing waste materials[J]. Electrochimica Acta, 2011, 58: 628-646. [95] DÍAZ B, JOIRET S, KEDDAM M, et al. Passivity of iron in red mud’s water solutions[J]. Electrochimica Acta, 2004, 49(17/18): 3039-3048. [96] DÍAZ B, FREIRE L, NÓVOA X R, et al. Chloride and CO2 transport in cement paste containing red mud[J]. Cement and Concrete Composites, 2015, 62: 178-186. [97] YAO N, ZHOU X C, LIU Y Q, et al. Synergistic effect of red mud and fly ash on passivation and corrosion resistance of 304 stainless steel in alkaline concrete pore solutions[J]. Cement and Concrete Composites, 2022, 132: 104637. [98] ZARROK H, ZARROUK A, HAMMOUTI B, et al. Corrosion control of carbon steel in phosphoric acid by purpald: weight loss, electrochemical and XPS studies[J]. Corrosion Science, 2012, 64: 243-252. [99] BASTIDAS J M, PINILLA P, CANO E, et al. Copper corrosion inhibition by triphenylmethane derivatives in sulphuric acid media[J]. Corrosion Science, 2003, 45(2): 427-449. [100] WEI J F, XU J X, MEI Y J, et al. Chloride adsorption on aminobenzoate intercalated layered double hydroxides: kinetic, thermodynamic and equilibrium studies[J]. Applied Clay Science, 2020, 187: 105495. [101] CUI L, HANG M Y, HUANG H H, et al. Experimental study on multi-component corrosion inhibitor for steel bar in chloride environment[J]. Construction and Building Materials, 2021, 313: 125533. [102] 谢 昶,严捍东.钢筋混凝土阻锈剂技术研发进展[J].材料导报,2014,28(13):101-106. XIE C, YAN H D Research progress of corrosion inhibitor for steel-reinforced concrete[J]. Materials Reports, 2014, 28(13): 101-106 (in Chinese). [103] 马世豪,李伟华,郑海兵,等.钢筋阻锈剂的阻锈机理及性能评价的研究进展[J].腐蚀与防护,2017,38(12):963-968. MA S H, LI W H, ZHENG H B, et al. Research progress of anti-corrosion mechanism and performance evaluation of corrosion inhibitor for steel bar[J]. Corrosion & Protection, 2017, 38(12): 963-968 (in Chinese). [104] 顾 越.核壳纳米SiO2改性水泥基材料性能研究[D].南京:东南大学,2017. GU Y. Modifying cementitious materials with core-shell nano-SiO2[D]. Nanjing: Southeast University, 2017 (in Chinese). [105] TANG L P, NILSSON L O. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cement and Concrete Research, 1993, 23(2): 247-253. [106] WILSON W, GONTHIER J N, GEORGET F, et al. Insights on chemical and physical chloride binding in blended cement pastes[J]. Cement and Concrete Research, 2022, 156: 106747. [107] BABAAHMADI A, MACHNER A, KUNTHER W, et al. Chloride binding in Portland composite cements containing metakaolin and silica fume[J]. Cement and Concrete Research, 2022, 161: 106924. [108] 王小刚,史才军,何富强,等.氯离子结合及其对水泥基材料微观结构的影响[J].硅酸盐学报,2013,41(2):187-198. WANG X G, SHI C J, HE F Q, et al. Chloride binding and its effects on microstructure of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2013, 41(2): 187-198 (in Chinese). [109] ELAKNESWARAN Y, NAWA T, KURUMISAWA K. Electrokinetic potential of hydrated cement in relation to adsorption of chlorides[J]. Cement and Concrete Research, 2009, 39(4): 340-344. [110] 勾密峰,管学茂,张海波.单硫型水化硫铝酸钙对氯离子的固化作用[J].建筑材料学报,2012,15(6):863-866. GOU M F, GUAN X M, ZHANG H B. Chloride binding in monosulfoaluminate hydrate[J]. Journal of Building Materials, 2012, 15(6): 863-866 (in Chinese). [111] 金祖权,孙 伟,赵铁军,等.在不同溶液中混凝土对氯离子的固化程度[J].硅酸盐学报,2009,37(7):1068-1072+1078. JIN Z Q, SUN W, ZHAO T J, et al. Chloride binding in concrete exposed to corrosive solutions[J]. Journal of the Chinese Ceramic Society, 2009, 37(7): 1068-1072+1078 (in Chinese). [112] 余红发.盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D].南京:东南大学,2004. YU H F. Study on high performance concrete in salt lake: durability, mechanism and service life prediction[D]. Nanjing: Southeast University, 2004 (in Chinese). [113] 吴 萌,张云升,刘志勇,等.水泥基材料碳硫硅钙石型硫酸盐侵蚀的研究进展[J].硅酸盐学报,2022,50(8):2270-2283. WU M, ZHANG Y S, LIU Z Y, et al. Research progress on thaumasite form of sulfate attack in cement-based materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2270-2283 (in Chinese). [114] 刘玉静.水泥基材料在硫酸盐-氯盐侵蚀下的破坏与评价[D].南京:东南大学,2016. LIU Y J. Destruction and evaluation of cement-based materials under sulfate-chloride attack[D]. Nanjing: Southeast University, 2016 (in Chinese). [115] CHEN C, JIANG L H, GUO M Z, et al. Effect of sulfate ions on corrosion of reinforced steel treated by DNA corrosion inhibitor in simulated concrete pore solution[J]. Construction and Building Materials, 2019, 228: 116752. [116] 蒋林华,陈 晨,郭明志,等.共存阴离子对核酸阻锈剂在模拟混凝土孔溶液中钢筋阻锈作用的影响[J].水利水电科技进展,2020,40(1):88-94. JIANG L H, CHEN C, GUO M Z, et al. Effect of coexisting anions on corrosion of reinforced steel treated by DNA corrosion inhibitor in simulated concrete pore solution[J]. Advances in Science and Technology of Water Resources, 2020, 40(1): 88-94 (in Chinese). [117] WANG D Q, PAN C G, LIU Z C, et al. Synergetic effect of two inhibitors for enhanced corrosion protection on the reinforcing steel in the chloride-contaminated carbonated solutions[J]. Construction and Building Materials, 2021, 286: 122916. [118] WANG H, ZHANG A L, ZHANG L C, et al. Study on the influence of compound rust inhibitor on corrosion of steel bars in chloride concrete by electrical parameters[J]. Construction and Building Materials, 2020, 262: 120763. [119] PAN C G, CHEN N, HE J Z, et al. Effects of corrosion inhibitor and functional components on the electrochemical and mechanical properties of concrete subject to chloride environment[J]. Construction and Building Materials, 2020, 260: 119724. [120] XU P Z, ZHOU J, LI G G, et al. Corrosion inhibition efficiency of compound nitrite with D-sodium gluconate on carbon steel in simulated concrete pore solution[J]. Construction and Building Materials, 2021, 288: 123101. [121] JOHARI M, ALLAHKARAM S R, TEYMOURI F, et al. The effect of carboxylate compounds on controlling nitrite’s environmental side effects for carbon steel corrosion protection in the simulated concrete pore solution[J]. Construction and Building Materials, 2021, 308: 125037. [122] TEYMOURI F, ALLAHKARAM S R, SHEKARCHI M, et al. A comprehensive study on the inhibition behaviour of four carboxylate-based corrosion inhibitors focusing on efficiency drop after the optimum concentration for carbon steel in the simulated concrete pore solution[J]. Construction and Building Materials, 2021, 296: 123702. [123] 张召才.钢筋混凝土的玉米蛋白阻锈剂研制及其阻锈机理研究[D].哈尔滨:哈尔滨工业大学,2020. ZHANG Z C. Research on the preparation of maize protein corrosion inhibitor and its inhibiting mechanism for reinforced concrete[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). [124] 徐 鹏,张轩翰,明高林,等.纳米改性水泥基材料功能化研究进展[J/OL].材料导报,2023(16):1-19[2022-08-11].https://kns.cnki.net/kcms/detail/50.1078.TB.20220810.1821.004.html. XU P, ZHANG X H, MING G L, et al. Research progress on functionalization of nano modified cement based materials[J]. Materials Reports, 2023(16): 1-19 [2022-08-11]. https://kns.cnki.net/kcms/detail/50.1078.TB.20220810.1821.004.html (in Chinese). [125] JITTABUT P, PINITSOONTORN S, THONGBAI P, et al Effect of nano-silica addition on the mechanical properties and thermal conductivity of cement composites[J]. Chiang Mai Journal of Science, 2016, 43(5): 1160-1170. [126] LEE H, SONG Y M, LOH K J, et al. Thermal response characterization and comparison of carbon nanotube-enhanced cementitious composites[J]. Composite Structures, 2018, 202: 1042-1050. [127] HANG M Y, JIANG M H, ZHAO W L, et al. Composite salt corrosion deterioration characteristics and damage calculation models of concrete incorporated with corrosion inhibiting admixtures[J]. Journal of Building Engineering, 2021, 44: 103221. |
[1] | 周丽娜, 蔡颖, 马财龙, 罗玲. 水滑石复合水泥基材料氯离子吸附能力的研究进展[J]. 硅酸盐通报, 2023, 42(4): 1137-1147. |
[2] | 丁超, 贾子杰, 王振华, 丁玉贤. 基于生命周期评价的UHPC碳排放控制潜力评估[J]. 硅酸盐通报, 2023, 42(4): 1242-1251. |
[3] | 余海燕, 徐晴, 王英翔, 董德宇. 不同环境下碳铝酸钙的稳定性研究[J]. 硅酸盐通报, 2023, 42(3): 845-853. |
[4] | 李广, 李北星, 黄安, 邓俊双. 养护温度和矿物掺合料对蒸养混凝土脆性的影响[J]. 硅酸盐通报, 2023, 42(2): 487-495. |
[5] | 陈波, 王伟鱼, 丰雨秋, 饶美娟. 蒸养条件下矿粉、粉煤灰对高铁相硅酸盐水泥基材料毛细孔和抗侵蚀性能的影响[J]. 硅酸盐通报, 2023, 42(1): 162-169. |
[6] | 徐鑫, 张鸿儒, 季韬, 赵宝军, 姚杰. 再生细骨料含水状态对砂浆性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3036-3046. |
[7] | 张啸, 王璜琪, 王栋民. 黄金尾矿制备水泥和混凝土的研究进展[J]. 硅酸盐通报, 2022, 41(9): 3121-2128. |
[8] | 赵雅明, 张振, 王畔, 张明飞. 矿物掺合料对UHPC性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3170-3175. |
[9] | 高源, 金祖权, 李宁. 利用丝束电极技术研究氧浓度对海水海砂砂浆中钢筋锈蚀的影响[J]. 硅酸盐通报, 2022, 41(8): 2672-2683. |
[10] | 庄彬彬, 萧超雄, 刘强, 邓嘉辉, 汪大洋. 不同掺合料混凝土与锈蚀钢筋间粘结-滑移力学性能试验研究[J]. 硅酸盐通报, 2022, 41(8): 2767-2773. |
[11] | 赵雅明, 张明飞, 张振, 罗要飞. 混杂纤维增强高强混凝土性能研究[J]. 硅酸盐通报, 2022, 41(7): 2299-2307. |
[12] | 王坤, 刘凤东, 杨飞华, 吕民望, 杨露, 王发洲. C-S-H纳米晶核对矿物掺合料复合胶凝材料水化性能的影响研究[J]. 硅酸盐通报, 2022, 41(7): 2352-2359. |
[13] | 陈伟, 李玥, 刘翔, 唐焱杰, 唐佩. DAP超分子水凝胶驱动自修复水泥基材料[J]. 硅酸盐通报, 2022, 41(5): 1502-1509. |
[14] | 杨帆, 张友锋, 余姚. 低温养护下矿物掺合料湿喷混凝土力学性能及配比优化研究[J]. 硅酸盐通报, 2022, 41(5): 1589-1598. |
[15] | 张洪刚, 蒋逸雯, 陈杰, 赵忠忠, 焦晓东, 黎碧云, 刘文欢, 李辉. 外加剂对半柔性路面用早强型水泥基灌浆料工作性能的调控[J]. 硅酸盐通报, 2022, 41(4): 1308-1317. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||