[1] 力国民,苏宁静,朱保顺,等.利用煤矸石制备Fe3O4和Fe负载的微波吸收材料[J].硅酸盐通报,2021,40(9):2998-3004. LI G M, SU N J, ZHU B S, et al. Fe3O4 and Fe loaded composites as microwave absorbents by recycling of gangue[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 2998-3004 (in Chinese). [2] CHEN G, ZHANG L M, LUO B C, et al. Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2022, 607: 24-33. [3] CUI Y H, YANG K, WANG J Q, et al. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave[J]. Carbon, 2021, 172: 1-14. [4] HOU T Q, JIA Z R, FENG A L, et al. Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity[J]. Journal of Materials Science & Technology, 2021, 68: 61-69. [5] LI J Y, DAI B S, QI Y J, et al. Enhanced electromagnetic wave absorption properties of carbon nanofibers embedded with ZnO nanocrystals[J]. Journal of Alloys and Compounds, 2021, 877: 160132. [6] ZHANG Y J, ZHANG Y L, LI Y P, et al. Facile design and permittivity control of reduced graphene oxide foam/TiO2 3D composite towards lightweight and high-efficient microwave absorption[J]. Journal of Alloys and Compounds, 2021, 889: 161695. [7] LI X H, SHU R W, WU Y, et al. Fabrication of Ni/ZnO/C hollow microspheres decorated graphene composites towards high-efficiency electromagnetic wave absorption in the Ku-band[J]. Ceramics International, 2021, 47(17): 24372-24383. [8] SHU R W, LI N N, LI X H, et al. Preparation of FeNi/C composite derived from metal-organic frameworks as high-efficiency microwave absorbers at ultrathin thickness[J]. Journal of Colloid and Interface Science, 2022, 606: 1918-1927. [9] WANG L, WEN B, YANG H B, et al. Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105958. [10] ZHAO Y Z, WANG W, WANG Q J, et al. Construction of excellent electromagnetic wave absorber from multi-heterostructure materials derived from ZnCo2O4 and ZIF-67 composite[J]. Carbon, 2021, 185: 514-525. [11] YAN J, HUANG Y, YAN Y H, et al. High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40781-40792. [12] XIANG Z, SONG Y M, XIONG J, et al. Enhanced electromagnetic wave absorption of nanoporousFe3O4@carbon composites derived from metal-organic frameworks[J]. Carbon, 2019, 142: 20-31. [13] WU N N, XU D M, WANG Z, et al. Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods[J]. Carbon, 2019, 145: 433-444. [14] XU X Q, RAN F T, LAI H, et al. In situ confined bimetallic metal-organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35999-36009. [15] XU J, ZHANG X, ZHAO Z B, et al. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties[J]. Small, 2021, 17(33): 2102032. [16] WANG Y Y, SUN W J, DAI K, et al. Flexible and heat-resistant carbon nanotube/graphene/polyimide foam for broadband microwave absorption[J]. Composites Science and Technology, 2021, 212: 108848. [17] HUANG Y, XIE A M, SEIDI F, et al. Core-shell heterostructured nanofibers consisting of Fe7S8 nanoparticles embedded into S-doped carbon nanoshells for superior electromagnetic wave absorption[J]. Chemical Engineering Journal, 2021, 423: 130307. [18] LIANG L L, GU W H, WU Y, et al. Heterointerface engineering in electromagnetic absorbers: new insights and opportunities[J]. Advanced Materials, 2022, 34(4): 2106195. [19] 于明飞,姚伦标,卿玉长,等.含频率选择表面耐高温吸波涂层的高温吸波性能[J].硅酸盐通报,2021,40(7):2401-2408. YU M F, YAO L B, QING Y C, et al. High temperature absorbing properties of high temperature resistance absorbing coating with frequency selective surface[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2401-2408 (in Chinese). [20] ZHAO Z H, KOU K C, ZHANG L M, et al. Optimal particle distribution induced interfacial polarization in bouquet-like hierarchical composites for electromagnetic wave absorption[J]. Carbon, 2022, 186: 323-332. [21] WEN H M, JIN H D, PAN J N, et al. Hollow FeNi/NiFe2O4-codoped carbon composite nanorods for electromagnetic wave absorption[J]. ACS Applied Nano Materials, 2022, 5: 3406-3414. [22] ZHOU Y, WANG S J, LI D S, et al. Lightweight and recoverable ANF/rGO/PI composite aerogels for broad and high-performance microwave absorption[J]. Composites Part B: Engineering, 2021, 213: 108701. [23] ZHOU X F, JIA Z R, FENG A L, et al. Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber[J]. Composites Part B: Engineering, 2020, 192: 107980. [24] WANG K J, YE Z W, LI X Q, et al. Nanoporous resorcinol-formaldehyde based carbon aerogel for lightweight and tunable microwave absorption[J]. Materials Chemistry and Physics, 2022, 278: 125718. [25] DONG Y Y, ZHU X J, PAN F, et al. Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption[J]. Carbon, 2022, 190: 68-79. [26] WU Z C, JIN C, YANG Z Q, et al. Integrating hierarchical interfacial polarization in yeast-derived Mo2C/C nanoflower/microsphere nanoarchitecture for boosting microwave absorption performance[J]. Carbon, 2022, 189: 530-538. |