[1] LIU J, BAO Z N, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4: 180-186. [2] AYKOL M, HERRING P, ANAPOLSKY A. Machine learning for continuous innovation in battery technologies[J]. Nature Reviews Materials, 2020, 5: 725-727. [3] WANG C W, FU K, KAMMAMPATA S P, et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries[J]. Chemical Reviews, 2020, 120: 4257-4300. [4] JOUYBARI Y H, BERKEMEIER F, SCHMITZ G. High performance all-solid-state lithium battery: assessment of the temperature dependence of Li diffusion[J]. Journal of Power Sources, 2022, 517: 230709. [5] ABOUALI S, YIM C H, MERATI A, et al. Garnet-based solid-state Li batteries: from materials design to battery architecture[J]. ACS Energy Letters, 2021, 6: 1920-1941. [6] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie-International Edition, 2007, 46: 7778-7781. [7] AWAKA J, KIJIMA N, HAYAKAWA H, et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure[J]. Journal of Solid State Chemistry, 2009, 182(8): 2046-2052. [8] CHEN C, SUN Y, HE L C, et al. Microstructural and electrochemical properties of Al- and Ga-doped Li7La3Zr2O12 garnet solid electrolytes[J]. ACS Applied Energy Materials, 2020, 3(5): 4708-4719. [9] BIRKNER N, LI C L, ESTES S L, et al. Gallium-doping effects on structure, lithium-conduction, and thermochemical stability of Li7-3xGaxLa3Zr2O12 garnet-type electrolytes[J]. Chemsuschem, 2021, 14: 1-11. [10] LOGEAT A, KÖEHLER T, EISELE U, et al. From order to disorder: the structure of lithium-conducting garnets Li7-xLa3TaxZr2-xO12 (x=0~2)[J]. Solid State Ionics, 2012, 206: 33-38. [11] LI Y T, HAN J T, WANG C A, et al. Optimizing Li+ conductivity in a garnet framework[J]. Journal of Materials Chemistry, 2012, 22: 15357-15361. [12] OHTA S, KOBAYASHI T, ASAOKA T. High lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr2-x,Nbx)O12 (x=0~2)[J]. Journal of Power Sources, 2011, 196: 3342-3345. [13] LI Y Q, WANG Z, CAO Y, et al. W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries[J]. Electrochimica Acta, 2015, 180: 37-42. [14] RETTENWANDER D, WELZL A, CHENG L, et al. Synthesis, crystal chemistry, and electrochemical properties of Li7-2xLa3Zr2-xMoxO12 (x=0.1~0.4): stabilization of the cubic garnet polymorph via substitution of Zr4+ by Mo6+[J]. Inorganic Chemistry, 2015, 54: 10440-10449. [15] LUO Y L, ZHANG Q X, SHEN A, et al. Calcium-doping effects on structure and electric performances of garnet-type Li6.6La3Zr1.6Sb0.4O12 solid-state electrolytes[J]. Solid State Ionics, 2022, 374: 115812. [16] DUMON A, HUANG M, SHEN Y, et al. High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet[J]. Solid State Ionics, 2013, 243: 36-41. [17] 董大彰,赵梦媛,解 昊,等.Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J].材料导报,2020,34:04001-04006. DONG D Z, ZHAO M Y, XIE H, et al. The role of Ba and Ga co-doping in microstructure and electrical conductivity of a garnet-type solid state electrolyte Li7La3Zr2O12[J]. Materials Reports, 2020, 34: 04001-04006 (in Chinese). [18] LARRAZ G, ORERA A, SANJUÁN M L. Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration[J]. Journal of Materials Chemistry A, 2013, 1: 11419-11428. [19] JULIEN C M. 4-volt cathode materials for rechargeable lithium batteries wet-chemistry synthesis, structure and electrochemistry[J]. Ionics, 2000, 6: 30-46. [20] JULIEN C M, MASSOT M. Lattice vibrations of materials for lithium rechargeable batteries I: lithium manganese oxide spinel[J]. Materials Science & Engineering B, 2003, 97: 217-230. [21] TIETZ F, WEGENER T, GERHARDS M T, et al. Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12[J]. Solid State Ionics, 2013, 230: 77-82. [22] DHIVYA L, MURUGAN R. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li7La3Zr2O12 lithium garnet[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 17606-17615. |