[1] 丁怡婷,寇江泽.我国建成世界最大清洁发电体系[N].人民日报海外版,2021-09-06. DING Y T, KOU J Z, China has built the world's largest clean power generation system[N]. People's Daily Overseas Edition, 2021-09-06 (in Chinese). [2] 梁启超,乔 芬,杨 健,等.太阳能电池的研究现状与进展[J].中国材料进展,2019,38(5):505-511. LIANG Q C, QIAO F, YANG J, et al. Present research status and progress of solar cells full text replacement[J]. Materials China, 2019, 38(5): 505-511 (in Chinese). [3] 严大洲,刘艳敏,万 烨,等.晶硅太阳能在“双碳”经济中的作用与影响[J].中国有色冶金,2021,50(5):1-6. YAN D Z, LIU Y M, WAN Y, et al. Effect and impact of crystalline silicon solar energy in the “double carbon” economy[J]. China Nonferrous Metallurgy, 2021, 50(5): 1-6 (in Chinese). [4] DASH W C. Silicon crystals free of dislocations[J]. Journal of Applied Physics, 1958, 29(4): 736-737. [5] HURLE D T J. Control of diameter in Czochralski and related crystal growth techniques[J]. Journal of Crystal Growth, 1977, 42: 473-482. [6] VORONKOV V V. The mechanism of swirl defects formation in silicon[J]. Journal of Crystal Growth, 1982, 59(3): 625-643. [7] SERIES R W, HURLE D T J. The use of magnetic fields in semiconductor crystal growth[J]. Journal of Crystal Growth, 1991, 113(1/2): 305-328. [8] PUZANOV N I, EIDENZON A M, PUZANOV D N. Modelling microdefect distribution in dislocation-free Si crystals grown from the melt[J]. Journal of Crystal Growth, 1997, 178(4): 468-478. [9] KANDA I, SUZUKI T, KOJIMA K. Influence of crucible and crystal rotation on oxygen-concentration distribution in large-diameter silicon single crystals[J]. Journal of Crystal Growth, 1996, 166(1/2/3/4): 669-674. [10] HOSHIKAWA K, HUANG X M. Oxygen transportation during Czochralski silicon crystal growth[J]. Materials Science and Engineering: B, 2000, 72(2/3): 73-79. [11] LUO J P, ZHOU C Y, LI Q H, et al. Diffusion coefficients of carbon, oxygen and nitrogen in silicon melt[J]. Journal of Crystal Growth, 2022, 580: 126476. [12] BOND W L, KAISER W. Interstitial versus substitutional oxygen in silicon[J]. Journal of Physics and Chemistry of Solids, 1960, 16(1/2): 44-45. [13] ONO T, SUGIMURA W, KIHARA T, et al. Wafer strength and slip generation behavior in 300 mm wafers[J]. ECS Transactions, 2006, 2(2): 109-122. [14] ZENG Z D, MA X Y, CHEN J H, et al. Effect of oxygen precipitates on dislocation motion in Czochralski silicon[J]. Journal of Crystal Growth, 2010, 312(2): 169-173. [15] 苏文佳,李九龙,杨 伟,等.直拉法单晶硅中位错影响因素研究进展[J].硅酸盐学报,2021,49(4):723-735. SU W J, LI J L, YANG W, et al. Research progress on influencing factors of dislocation in Czochralski silicon[J]. Journal of the Chinese Ceramic Society, 2021, 49(4): 723-735 (in Chinese). [16] FUKUSHIMA W, HARADA H, MIYAMURA Y, et al. Effect of oxygen on dislocation multiplication in silicon crystals[J]. Journal of Crystal Growth, 2018, 486: 45-49. [17] BINNS M J, KEARNS J, GOOD E A. Impact of oxygen-related defects on lifetime degradation in N-type CCZ/CZ mono-crystalline silicon during cell processing[J]. ECS Transactions, 2014, 60(1): 1233-1238. [18] HWANG J M, SCHRODER D K. Recombination properties of oxygen-precipitated silicon[J]. Journal of Applied Physics, 1986, 59(7): 2476-2487. [19] LI J Y, LIU Y J, TAN Y. Characterisation of single crystalline silicon grown by Czochralski method[J]. Materials Research Innovations, 2012, 16(6): 425-428. [20] NIEWELT T, SCHÖN J, WARTA W, et al. Degradation of crystalline silicon due to boron-oxygen defects[J]. IEEE Journal of Photovoltaics, 2017, 7(1): 383-398. [21] CHEN L, YU X G, CHEN P, et al. Effect of oxygen precipitation on the performance of Czochralski silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2011, 95(11): 3148-3151. [22] LIN A M R, DUTTON R W, ANTONIADIS D A, et al. The growth of oxidation stacking faults and the point defect generation at Si-SiO interface during thermal oxidation of silicon[J]. Journal of the Electrochemical Society, 1981, 128(5): 1121-1130. [23] SADAMITSU S, OKUI M, KOJISUEOKA, et al. A model for the formation of oxidation-induced stacking faults in Czochralski silicon[J]. Japanese Journal of Applied Physics, 1995, 34: L597-L599. [24] SINNO T, BROWN R A, VON AMMON W, et al. Point defect dynamics and the oxidation-induced stacking-fault ring in Czochralski-grown silicon crystals[J]. Journal of the Electrochemical Society, 1998, 145(1): 302-318. [25] KAISER W, FRISCH H L, REISS H. Mechanism of the formation of donor states in heat-treated silicon[J]. Physical Review, 1958, 112(5): 1546-1554. [26] CORBETT J W, FRISCH H L, SNYDER L C. On the thermal donors in silicon[J]. Materials Letters, 1984, 2(3): 209-210. [27] WAGNER P, HAGE J. Thermal double donors in silicon[J]. Applied Physics A, 1989, 49(2): 123-138. [28] MIYAMURA Y, HARADA H, NAKANO S, et al. Do thermal donors reduce the lifetimes of Czochralski-grown silicon crystals?[J]. Journal of Crystal Growth, 2018, 489: 1-4. [29] OLSEN E, HELANDER M I, MEHL T, et al. Spectral characteristics and spatial distribution of thermal donors in N-type Czochralski-silicon wafers[J]. Physica Status Solidi, 2020, 217(6): 1900884. [30] 王 伟.石英坩埚中碱金属含量对硅单晶拉制的影响[C]//第十届中国太阳能光伏会议论文集.常州,2008:243-246. WANG W. Effect of alkali metal content in quartz crucible on the pulling of silicon single crystal[C]//Proceedings of the 10th China Solar Photovoltaic Conference. Changzhou, 2008: 243-246 (in Chinese). [31] HANSEN R L, DRAFALL L E, MCCUTCHAN R M, et al. Surface-treated crucibles for improved zero dislocation performance: US5976247[P]. 1999-11-02. [32] HANSEN R L, DRAFALL L E, MCCUTCHAN R M, et al. Methods for improving zero dislocation yield of single crystals: US5980629[P]. 1999-11-09. [33] 莫 宇,张颖武,韩焕鹏,等.石英坩埚对大直径直拉硅单晶生长的影响[J].电子工艺技术,2021,42(1):46-49. MO Y, ZHANG Y W, HAN H P, et al. Effects of quartz crucible on growth of large diameter Czochralski silicon[J]. Electronics Process Technology, 2021, 42(1): 46-49 (in Chinese). [34] STURM F, TREMPA M, SCHUSTER G, et al. Material evaluation for engineering a novel crucible setup for the growth of oxygen free Czochralski silicon crystals[J]. Journal of Crystal Growth, 2022, 584: 126582. [35] 高农农,葛 林.加热器直径对200 mm太阳能级单晶硅加热效率、能耗和氧含量的影响[J].硅酸盐通报,2015,34(12):3658-3662. GAO N N, GE L. Influence of heater diameter on heating efficiency, power consumption and oxygen concentration in the solar-grade single silicon[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(12): 3658-3662 (in Chinese). [36] ZHOU B, CHEN W L, LI Z H, et al. Reduction of oxygen concentration by heater design during Czochralski Si growth[J]. Journal of Crystal Growth, 2018, 483: 164-168. [37] 郝玉清.拉晶埚位对直拉硅单晶氧含量的影响[C]//全国半导体硅材料学术会议论文集.上海,1998:75-76. HAO Y Q. Effect of pulling pot position on oxygen content of czochralski silicon single crystal[C]//National Conference on Semiconductor Silicon Materials. Shanghai, 1998: 75-76 (in Chinese). [38] 任 丽,罗晓英,李 宁,等.初始埚位对单晶少子寿命的影响[J].半导体技术,2011,36(10):782-785. REN L, LUO X Y, LI N, et al. Study on the CZ-Si growth process of high minority carrier lifetime[J]. Semiconductor Technology, 2011, 36(10): 782-785 (in Chinese). [39] 高忙忙,朱 博,李 进,等.加热器/坩埚相对位置对?200 mm单晶硅生长过程中温度场和晶体质量的影响[J].硅酸盐通报,2016,35(11):3607-3612. GAO M M, ZHU B, LI J, et al. Influence of heater/crucible position on the thermal field and crystal quality in the preparation of single crystal silicon with ?200 mm[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(11): 3607-3612 (in Chinese). [40] ZULEHNER W. Czochralski growth of silicon[J]. Journal of Crystal Growth, 1983, 65(1/2/3): 189-213. [41] CHEN J C, TENG Y Y, WUN W T, et al. Numerical simulation of oxygen transport during the CZ silicon crystal growth process[J]. Journal of Crystal Growth, 2011, 318(1): 318-323. [42] POPESCU A, BELLMANN M P, VIZMAN D. Effect of crucible rotation on the temperature and oxygen distributions in Czochralski grown silicon for photovoltaic applications[J]. CrystEngComm, 2021, 23(2): 308-316. [43] 牟伟明.直拉硅单晶工艺参数对热场的影响研究[D].西安:西安理工大学,2015:20-25. MOU W M. Influence of Czochralski silicon single crystal process parameters on thermal field[D]. Xi’an: Xi’an University of Technology, 2015: 20-25 (in Chinese). [44] 杨凤艳.直拉法硅单晶中晶转对杂质含量的影响[J].大陆桥视野,2016(14):112-113. YANG F Y. Influence of crystal transfer on impurity content in Czochralski single crystal[J]. New Silk Road Horizon, 2016(14): 112-113 (in Chinese). [45] BORGHESI A, PIVAC B, SASSELLA A, et al. Oxygen precipitation in silicon[J]. Journal of Applied Physics, 1995, 77(9): 4169-4244. [46] MACHIDA N, SUZUKI Y, ABE K, et al. The effects of argon gas flow rate and furnace pressure on oxygen concentration in Czochralski-grown silicon crystals[J]. Journal of Crystal Growth, 1998, 186(3): 362-368. [47] KALAEV V V, EVSTRATOV I Y, MAKAROV Y N. Gas flow effect on global heat transport and melt convection in Czochralski silicon growth[J]. Journal of Crystal Growth, 2003, 249(1/2): 87-99. [48] TENG Y Y, CHEN J C, HUANG C C, et al. Numerical investigation of the effect of heat shield shape on the oxygen impurity distribution at the crystal-melt interface during the process of Czochralski silicon crystal growth[J]. Journal of Crystal Growth, 2012, 352(1): 167-172. [49] PEARCE C W, JACCODINE R J, FILO A J, et al. Oxygen content of heavily doped silicon[J]. Applied Physics Letters, 1985, 46(9): 887-889. [50] BORGHESI A, GEDDO M, GUIZZETTI G, et al. Interstitial oxygen determination in heavily doped silicon[J]. Journal of Applied Physics, 1990, 68(4): 1655-1660. [51] WIJARANAKULA W. Oxygen diffusion in carbon-doped silicon[J]. Journal of Applied Physics, 1990, 68(12): 6538-6540. [52] WIJARANAKULA W. Oxygen precipitation and defects in heavily doped Czochralski silicon[J]. Journal of Applied Physics, 1992, 72(7): 2713-2723. [53] NOZAKI T, ITOH Y, MASUI T, et al. Behavior of oxygen in the crystal formation and heat treatment of silicon heavily doped with antimony[J]. Journal of Applied Physics, 1986, 59(7): 2562-2565. [54] HUANG X M, TERASHIMA K, IZUNOME K, et al. Effect of antimony-doping on the oxygen segregation coefficient in silicon crystal growth[J]. Journal of Crystal Growth, 1995, 149(1/2): 59-63. [55] GUPTA S, MESSOLORAS S, SCHNEIDER J R, et al. Oxygen precipitation in carbon-doped silicon[J]. Semiconductor Science and Technology, 1992, 7(1): 6-11. [56] SCALA R, PORRINI M, VORONKOV V. Impact of arsenic and phosphorus concentration on oxygen content in heavily doped silicon single crystal[J]. Journal of Crystal Growth, 2020, 548: 125820. [57] WANG C, ZHANG H, WANG T H, et al. A continuous Czochralski silicon crystal growth system[J]. Journal of Crystal Growth, 2003, 250(1/2): 209-214. [58] XU H, TIAN X R. Minority carrier lifetime of N-type mono-crystalline silicon produced by continuous Czochralski technology and its effect on hetero-junction solar cells[J]. Energy Procedia, 2016, 92: 708-714. [59] JAFRI I H, PRASAD V, ANSELMO A P, et al. Role of crucible partition in improving Czochralski melt conditions[J]. Journal of Crystal Growth, 1995, 154(3/4): 280-292. [60] KITASHIMA T, LIU L J, KITAMURA K, et al. Effects of shape of an inner crucible on convection of lithium niobate melt in a double-crucible Czochralski process using the accelerated crucible rotation technique[J]. Journal of Crystal Growth, 2004, 267(3/4): 574-582. [61] ZHAO W H, LI J C, LIU L J. Control of oxygen impurities in a continuous-feeding Czochralski-silicon crystal growth by the double-crucible method[J]. Crystals, 2021, 11(3): 264. [62] NGUYEN T H T, CHEN J C, LO S C. Effects of different partition depths on heat and oxygen transport during continuous Czochralski (CCz) silicon crystal growth[J]. Journal of Crystal Growth, 2022, 583: 126546. [63] 阙端麟.硅材料科学与技术[M].杭州:浙江大学出版社,2000:39. QUE D L. Silicon materials science and technology[M]. Hangzhou: Zhejiang University Press, 2000: 39 (in Chinese). [64] HIRATA H, HOSHIKAWA K. Silicon crystal growth in a cusp magnetic field[J]. Journal of Crystal Growth, 1989, 96(4): 747-755. [65] 宇慧平,隋允康,张峰翊,等.?300 mm的大直径直拉单晶硅勾形磁场下生长的数值模拟[J].无机材料学报,2005,20(2):453-458. YU H P, SUI Y K, ZHANG F Y, et al. Numerical simulation of a Czochralski silicon crystal growth with a large diameter ?300 mm under a cusp magnetic field[J]. Journal of Inorganic Materials, 2005, 20(2): 453-458 (in Chinese). [66] 常 麟,周旗钢,戴小林,等.CUSP磁场对直拉硅单晶氧浓度分布影响的数值模拟[J].稀有金属,2011,35(6):909-915. CHANG L, ZHOU Q G, DAI X L, et al. Numerical simulation of CUSP magnetic field on oxygen concentration distribution in CZ-Si crystal growth[J]. Chinese Journal of Rare Metals, 2011, 35(6): 909-915 (in Chinese). [67] CHEN J C, GUO P C, CHANG C H, et al. Numerical simulation of oxygen transport during the Czochralski silicon crystal growth with a cusp magnetic field[J]. Journal of Crystal Growth, 2014, 401: 888-894. |