硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (9): 3243-3258.
童鑫1, 熊哲1, 高新宇1, 侯俊伟1, 刘怡颖1, 廖铠丰1, 吴伟创1, 吴伟斌1, 齐龙1,2, 王海林1, 蔡位子1,3
收稿日期:
2022-05-09
修回日期:
2022-07-07
出版日期:
2022-09-15
发布日期:
2022-09-27
通讯作者:
蔡位子,博士,副教授。E-mail:wzcoi@scau.edu.cn作者简介:
童 鑫(1997—),男,硕士研究生。主要从事燃料电池相关研究。E-mail:577305746@qq.com
基金资助:
TONG Xin1, XIONG Zhe1, GAO Xinyu1, HOU Junwei1, LIU Yiying1, LIAO Kaifeng1, WU Weichuang1, WU Weibin1, QI Long1,2, WANG Hailin1, CAI Weizi1,3
Received:
2022-05-09
Revised:
2022-07-07
Online:
2022-09-15
Published:
2022-09-27
摘要: 质子交换膜燃料电池是一种高效清洁的发电技术,具有反应动力学快、启动温度低等特点。目前质子交换膜燃料电池技术发展迅速,有望得到广泛推广和普及。本文从质子交换膜燃料电池核心组件出发,对近年来质子交换膜燃料电池的发展进行了简要概述。从材料出发,对核心组件进行分类,详细介绍了质子交换膜、催化剂以及气体扩散层的研究现状和技术特点,综述了各组件的研究方法、改进方法以及研究进展,展望了质子交换膜燃料电池的研究方向和未来发展趋势。基于高温环境下的各种优势,具有短侧链、低当量的且适用于高温低湿环境的质子交换膜仍将是重点研究对象。质子交换膜燃料电池将进一步向低Pt甚至无Pt方向发展,同时未来将实现无增湿条件下的水平衡。
中图分类号:
童鑫, 熊哲, 高新宇, 侯俊伟, 刘怡颖, 廖铠丰, 吴伟创, 吴伟斌, 齐龙, 王海林, 蔡位子. 质子交换膜燃料电池研究现状及发展[J]. 硅酸盐通报, 2022, 41(9): 3243-3258.
TONG Xin, XIONG Zhe, GAO Xinyu, HOU Junwei, LIU Yiying, LIAO Kaifeng, WU Weichuang, WU Weibin, QI Long, WANG Hailin, CAI Weizi. Research Status and Development of Proton Exchange Membrane Fuel Cell[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(9): 3243-3258.
[1] 热伊莱·卡得尔,伊卜拉伊木·阿卜杜吾普,陈 刚.全球气候变化及其影响因素研究进展[J].农业开发与装备,2020(9):81-82. REYLAI K, IRAIM A, CHEN G. Research progress on global climate change and its influencing factors[J]. Agricultural Development & Equipments, 2020(9): 81-82 (in Chinese). [2] 李 高.凝聚全社会力量 推进碳达峰目标实现[J].环境与可持续发展,2021,46(2):6-10. LI G. To push forward the carbon dioxide emission peaking goal by concentrating the power of the whole society[J]. Environment and Sustainable Development, 2021, 46(2): 6-10 (in Chinese). [3] 张 伟,向洪坤.燃料电池汽车基本技术及发展综述[J].智慧电力,2020,48(4):36-41+96. ZHANG W, XIANG H K. Review on basic technology and development of fuel cell vehicle[J]. Smart Power, 2020, 48(4): 36-41+96 (in Chinese). [4] 梁云凤.氢能经济是实现碳中和的重要路径[N].中国能源报,2021-04-26. LIANG Y F. Hydrogen energy economy is an important path to achieve carbon neutrality[N]. China Energy News, 2021-04-26 (in Chinese). [5] 王世卿.质子交换膜的应用与市场研究[J].信息记录材料,2014,15(1):46-50+62. WANG S Q. Application and market research of proton exchange membranes[J]. Information Recording Materials, 2014, 15(1): 46-50+62 (in Chinese). [6] 刘旭坡,张运丰,邓邵峰,等.燃料电池用聚合物质子交换膜的研究进展[J].电化学,2020,26(1):103-120. LIU X P, ZHANG Y F, DENG S F, et al. Research progresses in polymeric proton exchange membranes for fuel cells[J]. Journal of Electrochemistry, 2020, 26(1): 103-120 (in Chinese). [7] 李 婷,杜 坤,谢光有.燃料电池质子交换膜概述[J].东方电气评论,2015,29(3):6-13+19. LI T, DU K, XIE G Y. Proton exchange membrane for fuel cell application[J]. Dongfang Electric Review, 2015, 29(3): 6-13+19 (in Chinese). [8] ZHANG Y J, MIYAKE J, AKIYAMA R, et al. Sulfonated phenylene/quinquephenylene/perfluoroalkylene terpolymers as proton exchange membranes for fuel cells[J]. ACS Applied Energy Materials, 2018, 1(3): 1008-1015. [9] 赵经纬,蔡园满,易 秘,等.燃料电池用质子交换膜产业分析[J].江西化工,2019(6):322-326. ZHAO J W, CAI Y M, YI M, et al. Industry analysis of proton exchange membrane for fuel cell[J]. Jiangxi Chemical Industry, 2019(6): 322-326 (in Chinese). [10] 刘建平,郑玉斌,杜 杰.燃料电池用质子交换膜的研究进展[J].膜科学与技术,2005,25(6):75-79. LIU J P, ZHENG Y B, DU J. Progress in proton exchange membranes for fuel cells[J]. Membrane Science and Technology, 2005, 25(6): 75-79 (in Chinese). [11] 鲍 冰,刘 锋,段 骁,等.质子交换膜燃料电池膜电极组件研究进展综述[J].贵金属,2019,40(2):73-82. BAO B, LIU F, DUAN X, et al. Review on progress of membrane electrode assembly in proton-exchange membrane fuel cells[J]. Precious Metals, 2019, 40(2): 73-82 (in Chinese). [12] HAIDER R, WEN Y C, MA Z F, et al. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies[J]. Chemical Society Reviews, 2021, 50(2): 1138-1187. [13] WANG C, WANG S B, PENG L F, et al. Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications[J]. Energies, 2016, 9(8): 603. [14] WONG C Y, WONG W Y, RAMYA K, et al. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: a review[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6116-6135. [15] XU G X, XUE S J, WEI Z L, et al. Stabilizing phosphotungstic acid in Nafion membrane via targeted silica fixation for high-temperature fuel cell application[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4301-4308. [16] 熊小鹏.高温质子交换膜燃料电池用Nafion复合膜的研究[D].天津:天津大学,2008. XIONG X P. A study on Nafion composite membranes for high temperature proton exchange membrane fuel cell[D]. Tianjin: Tianjin University, 2008 (in Chinese). [17] OH K, KWON O, SON B, et al. Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition[J]. Journal of Membrane Science, 2019, 583: 103-109. [18] MURIITHI B, LOY D A. Proton conductivity of nafion/ex-situ sulfonic acid-modified stber silica nanocomposite membranes as a function of temperature, silica particles size and surface modification[J]. Membranes, 2016, 6(1): E12. [19] POROZHNYY M V, SHKIRSKAYA S A, BUTYLSKII D Y, et al. Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: effect of functionalization[J]. Electrochimica Acta, 2021, 370: 137689. [20] 李 丹,宋天丹,康敬欣,等.燃料电池用质子交换膜的研究进展[J].电源技术,2016,40(10):2084-2087. LI D, SONG T D, KANG J X, et al. Development of proton exchange membrane for fuel cell[J]. Chinese Journal of Power Sources, 2016, 40(10): 2084-2087 (in Chinese). [21] CHEN X L, LÜ H X, LIN Q L, et al. Partially fluorinated poly(arylene ether)s bearing long alkyl sulfonate side chains for stable and highly conductive proton exchange membranes[J]. Journal of Membrane Science, 2018, 549: 12-22. [22] 侯敬贺,刘闪闪,孙 翔,等.主链组成对低磺化度磺化芳香族聚合物质子交换膜性能的影响[J].化工进展,2019,38(4):1853-1861. HOU J H, LIU S S, SUN X, et al. Effect of main chain composition on the performance of proton exchange membrane of sulfonated aromatic polymer with low degree of sulfonation[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1853-1861 (in Chinese). [23] ASENSIO J A, SÁNCHEZ E M, GÓMEZ-ROMERO P. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest[J]. Chemical Society Reviews, 2010, 39(8): 3210-3239. [24] XING B Z, SAVADOGO O. The effect of acid doping on the conductivity of polybenzimidazole (PBI)[J]. Journal of New Materials for Electrochemical Systems, 1999, 2(2): 95-101 [25] 李 涛,林蔚然,张韬毅,等.聚苯并咪唑类高温质子交换膜研究进展[J].工程塑料应用,2019,47(6):128-132. LI T, LIN W R, ZHANG T Y, et al. Research progress on polybenzimidazole high temperature proton conduction membranes[J]. Engineering Plastics Application, 2019, 47(6): 128-132 (in Chinese). [26] HOOSHYARI K, REZANIA H, VATANPOUR V, et al. High temperature membranes based on PBI/sulfonated polyimide and doped-perovskite nanoparticles for PEM fuel cells[J]. Journal of Membrane Science, 2020, 612: 118436. [27] IMRAN M A, LI T T, WU X M, et al. Sulfonated polybenzimidazole/amine functionalized titanium dioxide (sPBI/AFT) composite electrolyte membranes for high temperature proton exchange membrane fuel cells usage[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2425-2437. [28] LI X B, MA H W, WANG P, et al. Construction of high-performance, high-temperature proton exchange membranes through incorporating SiO2 nanoparticles into novel cross-linked polybenzimidazole networks[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 30735-30746. [29] CHEN S X, PAN H Y, CHANG Z H, et al. Synthesis and study of pyridine-containing sulfonated polybenzimidazole multiblock copolymer for proton exchange membrane fuel cells[J]. Ionics, 2019, 25(5): 2255-2265. [30] MUTHURAJA P, PRAKASH S, SHANMUGAM V M, et al. Novel perovskite structured calcium titanate-PBI composite membranes for high-temperature PEM fuel cells: synthesis and characterizations[J]. International Journal of Hydrogen Energy, 2018, 43(9): 4763-4772. [31] BARATI S, ABDOLLAHI M, MEHDIPOURGHAZI M, et al. High temperature proton exchange porous membranes based on polybenzimidazole/lignosulfonate blends: preparation, morphology and physical and proton conductivity properties[J]. International Journal of Hydrogen Energy, 2019, 44(57): 30440-30453. [32] ÜREGEN N, PEHLIVANOLU K, ÖZDEMIR Y, et al. Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2636-2647. [33] 杨小乐.基于新型磺化PBI膜的高温质子交换膜燃料电池的性能研究[D].天津:天津大学,2012. YANG X L. Study on performance of high temperature proton exchange membrane fuel cells with novel sulfonated PBI membranes[D]. Tianjin: Tianjin University, 2012 (in Chinese). [34] DING L M, SONG X P, WANG L H, et al. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications[J]. Journal of Membrane Science, 2019, 578: 126-135. [35] PARK J, WANG L, ADVANI S G, et al. Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs[J]. Electrochimica Acta, 2014, 120: 30-38. [36] ZHANG J, CHEN S A, BAI H J, et al. Effects of phosphotungstic acid on performance of phosphoric acid doped polyethersulfone-polyvinylpyrrolidone membranes for high temperature fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(19): 11104-11114. [37] ZHANG J, LIU J, LU S F, et al. Ion-exchange-induced selective etching for the synthesis of amino-functionalized hollow mesoporous silica for elevated-high-temperature fuel cells[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31922-31930. [38] TAO P P, DAI Y, CHEN S S, et al. Hyperbranched polyamidoamine modified high temperature proton exchange membranes based on PTFE reinforced blended polymers[J]. Journal of Membrane Science, 2020, 604: 118004. [39] 俞红梅,衣宝廉.车用燃料电池现状与电催化[J].中国科学:化学,2012,42(4):480-494. YU H M, YI B L. Current status of vehicle fuel cells and electrocatalysis[J]. Scientia Sinica (Chimica), 2012, 42(4): 480-494 (in Chinese). [40] STAMENKOVIC V R, MUN B S, ARENZ M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials, 2007, 6(3): 241-247. [41] ZHANG J, YANG H Z, FANG J Y, et al. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra[J]. Nano Letters, 2010, 10(2): 638-644. [42] CAI X, LIN R, SHEN D D, et al. Gram-scale synthesis of well-dispersed shape-controlled Pt-Ni/C as high-performance catalysts for the oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29689-29697. [43] 曹龙生,蒋尚峰,秦晓平,等.单分散的超小PtCu合金的制备及其氧还原电催化性能[J].中国科学:化学,2017,47(5):683-691. CAO L S, JIANG S F, QIN X P, et al. Preparation of monodispersed ultra-small PtCu alloy with remarkable electrocatalytic performance[J]. Scientia Sinica (Chimica), 2017, 47(5): 683-691 (in Chinese). [44] LEE H, PARK S, KIM H. Preparation of CO-tolerant PtRuNi/C ternary electrocatalyst having a composition gradient shell[J]. Chemical Engineering Journal, 2021, 414: 128792. [45] 靳 选,王 宏,葛传楠.乙二醇高温还原制备燃料电池核壳结构Cu@Pt-Pd电极的研究[J].云南化工,2019,46(3):63-65. JIN X, WANG H, GE C N. Preparation of core-shell Cu@Pt-Pd electrode for fuel cells by high temperature reduction of ethylene glycol[J]. Yunnan Chemical Technology, 2019, 46(3): 63-65 (in Chinese). [46] KUTTIYIEL K A, SASAKI K, CHOI Y, et al. Nitride stabilized PtNi core-shell nanocatalyst for high oxygen reduction activity[J]. Nano Letters, 2012, 12(12): 6266-6271. [47] SUN Y, HSIEH Y C, CHANG L C, et al. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes[J]. Journal of Power Sources, 2015, 277: 116-123. [48] KUTTIYIEL K A, CHOI Y, SASAKI K, et al. Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction[J]. Nano Energy, 2016, 29: 261-267. [49] YANG S, TAK Y J, KIM J, et al. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction[J]. ACS Catalysis, 2017, 7(2): 1301-1307. [50] LIU J, BAK J, ROH J, et al. Reconstructing the coordination environment of platinum single-atom active sites for boosting oxygen reduction reaction[J]. ACS Catalysis, 2021, 11(1): 466-475. [51] YANG S B, FENG X L, WANG X C, et al. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie International Edition, 2011, 50(23): 5339-5343. [52] GONG K P, DU F, XIA Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764. [53] ALEXANDER A M, HARGREAVES J S J. Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys[J]. Chemical Society Reviews, 2010, 39(11): 4388-4401. [54] 聂 瑶,丁 炜,魏子栋.质子交换膜燃料电池非铂电催化剂研究进展[J].化工学报,2015,66(9):3305-3318. NIE Y, DING W, WEI Z D. Recent advancements of Pt-free catalysts for polymer electrolyte membrane fuel cells[J]. CIESC Journal, 2015, 66(9): 3305-3318 (in Chinese). [55] DONG Y Y, DENG Y J, ZENG J H, et al. A high-performance composite ORR catalyst based on the synergy between binary transition metal nitride and nitrogen-doped reduced graphene oxide[J]. Journal of Materials Chemistry A, 2017, 5(12): 5829-5837. [56] YOON J, KIM S, PARK H, et al. Molecular M-N4 macrocycles in a nitrogen-carbon matrix as a highly durable oxygen reduction reaction (ORR) electrocatalysts in acid media[J]. Materials Letters, 2021, 291: 129561. [57] LIANG Z Z, ZHENG H Q, CAO R. Importance of electrocatalyst morphology for the oxygen reduction reaction[J]. ChemElectroChem, 2019, 6(10): 2600-2614. [58] GAO Y Y, WANG L, LI G Z, et al. Taming transition metals on N-doped CNTs by a one-pot method for efficient oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2018, 43(16): 7893-7902. [59] DAI L M, XUE Y H, QU L T, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chemical Reviews, 2015, 115(11): 4823-4892. [60] LIU Z W, PENG F, WANG H J, et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angewandte Chemie International Edition, 2011, 50(14): 3257-3261. [61] YAO Z, NIE H G, YANG Z, et al. Catalyst-free synthesis of iodine-doped graphene via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium[J]. Chemical Communications (Cambridge, England), 2012, 48(7): 1027-1029. [62] DAEMS N, SHENG X, VANKELECOM I F J, et al. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction[J]. J Mater Chem A, 2014, 2(12): 4085-4110. [63] CHEN X A, CHEN X H, XU X, et al. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials[J]. Nanoscale, 2014, 6(22): 13740-13747. [64] ZHENG Y, JIAO Y, GE L, et al. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J]. Angewandte Chemie International Edition, 2013, 52(11): 3110-3116. [65] MOOSTE M, KIBENA-PLDSEPP E, MATISEN L, et al. Oxygen reduction on catalysts prepared by pyrolysis of electrospun styrene-acrylonitrile copolymer and multi-walled carbon nanotube composite fibres[J]. Catalysis Letters, 2018, 148(7): 1815-1826. [66] YU H J, SHANG L, BIAN T, et al. Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction[J]. Advanced Materials, 2016, 28(25): 5080-5086. [67] 王晓丽,张华民,张建鲁,等.质子交换膜燃料电池气体扩散层的研究进展[J].化学进展,2006,18(4):507-513. WANG X L, ZHANG H M, ZHANG J L, et al. Progress of gas diffusion layer for proton exchange membrane fuel cells[J]. Progress in Chemistry, 2006, 18(4): 507-513 (in Chinese). [68] 唐浩林,徐 琴,木士春,等.PEM燃料电池用气体扩散层材料研究进展[J].电池工业,2004,9(5):253-257. TANG H L, XU Q, MU S C, et al. Review on gas-diffusion layer materials for PEM fuel cell[J]. Chinese Battery Industry, 2004, 9(5): 253-257 (in Chinese). [69] 曹婷婷,崔新然,马千里,等.质子交换膜燃料电池气体扩散层研究进展[J].汽车文摘,2021(3):8-14. CAO T T, CUI X R, MA Q L, et al. Research progress of gas diffusion layer in proton exchange membrane fuel cells[J]. Automotive Digest, 2021(3): 8-14 (in Chinese). [70] 舒清柱,丁伟元,赵 红.基于碳纤维/碳纳米管新型气体扩散层的制备[J].大连交通大学学报,2020,41(5):71-77. SHU Q Z, DING W Y, ZHAO H. Study of a novel gas diffusion layer based on carbon fiber/carbon nanotubes[J]. Journal of Dalian Jiaotong University, 2020, 41(5): 71-77 (in Chinese). [71] HUSSAIN N, VAN STEEN E, TANAKA S, et al. Metal based gas diffusion layers for enhanced fuel cell performance at high current densities[J]. Journal of Power Sources, 2017, 337: 18-24. [72] AGUDELO M C B, HAMPE M, REIBER T, et al. Investigation of porous metal-based 3D-printed anode GDLs for tubular high temperature proton exchange membrane fuel cells[J]. Materials (Basel, Switzerland), 2020, 13(9): 2096. [73] YANG Y G, ZHOU X Y, LI B, et al. Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: material and structure designs of microporous layer[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4259-4282. [74] RESHETENKO T, BEN B L. Impact of a gas diffusion layer’s structural and textural properties on oxygen mass transport resistance in the cathode and performance of proton exchange membrane fuel cells[J]. Electrochimica Acta, 2021, 371: 137752. [75] NANADEGANI F S, LAY E N, SUNDEN B. Effects of an MPL on water and thermal management in a PEMFC[J]. International Journal of Energy Research, 2019, 43(1): 274-296. [76] LI B, XIE M, JI H, et al. Optimization of cathode microporous layer materials for proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(27): 14674-14686. [77] CHANG H M, CHANG M H. Effect of gas diffusion layer with double-side microporous layer coating on polymer electrolyte membrane fuel cell performance[J]. Journal of Fuel Cell Science and Technology, 2013, 10(2): 21005. [78] LIN G Y, LIU S Y, QU G K, et al. Effect of pore size distribution in the gas diffusion layer adjusted by composite carbon black on fuel cell performance[J]. International Journal of Energy Research, 2021, 45(5): 7689-7702. [79] MORGAN J M, DATTA R. Understanding the gas diffusion layer in proton exchange membrane fuel cells. I. How its structural characteristics affect diffusion and performance[J]. Journal of Power Sources, 2014, 251: 269-278. [80] ANTONACCI P, CHEVALIER S, LEE J, et al. Balancing mass transport resistance and membrane resistance when tailoring microporous layer thickness for polymer electrolyte membrane fuel cells operating at high current densities[J]. Electrochimica Acta, 2016, 188: 888-897. [81] 陈 黎,栾辉宝,陶文铨.PEMFC气体通道表面润湿特性对气体扩散层中水分布的影响[J].化工学报,2011,62(s1):19-25. CHEN L, LUAN H B, TAO W Q. Effects of gas channel wall wettability on liquid water distribution and transport in gas diffusion layer of proton exchange membrane fuel cell[J]. CIESC Journal, 2011, 62(s1): 19-25 (in Chinese). [82] DAI W, WANG H J, YUAN X Z, et al. Measurement of water transport rates across the gas diffusion layer in a proton exchange membrane fuel cell, and the influence of polytetrafluoroethylene content and micro-porous layer[J]. Journal of Power Sources, 2009, 188(1): 122-126. [83] KAKAEE A H, MOLAEIMANESH G R, ELYASI GARMAROUDI M H. Impact of PTFE distribution across the GDL on the water droplet removal from a PEM fuel cell electrode containing binder[J]. International Journal of Hydrogen Energy, 2018, 43(32): 15481-15491. [84] ZHANG R F, YANG B W, SHAO Z F, et al. Mechanism and model for optimizing polytetrafluoroethylene distribution to improve the electrical and thermal conductivity of treated carbon fiber paper in fuel cells[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14207-14220. [85] CHEN Y, TIAN T, WAN Z H, et al. Influence of PTFE on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell[J]. International Journal of Electrochemical Science, 2018, 13: 3827-3842. [86] MAHNAMA S M, KHAYAT M. Three dimensional investigation of the effect of MPL characteristics on water saturation in PEM fuel cells[J]. Journal of Renewable and Sustainable Energy, 2017, 9(1): 014301. |
[1] | 蔡政坤;孙红亮;陈志元;蒋闽晋;郭茜茜. 铬酸镧材料的制备、性能及应用研究[J]. 硅酸盐通报, 2020, 39(6): 1892-1901. |
[2] | 孙宁, 刘小伟, 刘湘林, 金芳军. 铋离子掺杂固体氧化物燃料电池阴极材料的研究进展[J]. 硅酸盐通报, 2020, 39(12): 3958-3963. |
[3] | 高文凯, 谢纪伟, 王兵兵, 骞少阳, 袁坚. BaO含量与热处理制度对BaO-Al2O3-B2O3-SiO2体系封接玻璃性能的影响[J]. 硅酸盐通报, 2019, 38(7): 2302-2307. |
[4] | 李瑞锋;王文娟;刘诚;黄康;李纯;鲁自鼎. LaBaCoFeO5+δ-Ce0.8Sm0.2O1.9复合阴极的电化学性能研究[J]. 硅酸盐通报, 2019, 38(4): 1012-101. |
[5] | 管清梅;吴福芳;王洪涛. 复合电解质SrCe0.9 Yb0.1 O3-α-LiCl-KCl的制备及其中温电性能研究[J]. 硅酸盐通报, 2017, 36(9): 2935-2939. |
[6] | 王琳琳;何峰;王立格;梅书霞;金明芳;谢峻林. BaO对硅酸盐SOFC封接玻璃结构与性能的影响[J]. 硅酸盐通报, 2016, 35(1): 267-274. |
[7] | 王旭红;纪网金;阮世栋;曹晨;陈梦珺. Pt基直接乙醇燃料电池阳极催化剂的性能研究[J]. 硅酸盐通报, 2015, 34(10): 2786-2791. |
[8] | 侯宏英;孟瑞晋;张春芳. 再铸磷酸氢锆/Nafion(R)复合膜的制备与表征[J]. 硅酸盐通报, 2014, 33(7): 1720-1723. |
[9] | 田长安;曹严;尹奇异;谢劲松;王春阳;杨娟;王明;阳杰. La1.9Ba0.1Mo1.9Al0.1O8.8电解质材料的制备及性能研究[J]. 硅酸盐通报, 2013, 32(12): 2554-2558. |
[10] | 孙红燕;森维;易中周;鲁顺利. 中温固体氧化物燃料电池材料的研究进展[J]. 硅酸盐通报, 2012, 31(5): 1194-1199. |
[11] | 聂丽芳;刘俊成;张玉军;董艳. 浸渗法制备固体氧化物燃料电池复合阴极研究进展[J]. 硅酸盐通报, 2012, 31(4): 888-891. |
[12] | 徐旭东;田长安;尹奇异;程继海. 固体氧化物燃料电池电解质材料的发展趋势[J]. 硅酸盐通报, 2011, 30(3): 593-596. |
[13] | 黎朝晖;侯书恩;庞松. 中温固体氧化物燃料电池阴极材料La_(0.7)Sr_(0.2)Co_(0.1)CuO_(3-σ)的制备与表征[J]. 硅酸盐通报, 2010, 29(1): 33-37. |
[14] | 郭友斌;陆丽华;储凌;张华;金江. 类钙钛矿IT-SOFC阴极材料研究进展[J]. 硅酸盐通报, 2009, 28(5): 991-996. |
[15] | 钟正平;刘瑞泉. Sm2-χCeχCuO4的制备及在电化学合成氨中的阴极电催化性能[J]. 硅酸盐通报, 2009, 28(2): 350-354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||