[1] 王 婧,廉一龙,韩秀峰.航空发动机用聚酰亚胺复合材料研究与应用[J].航空制造技术,2017,60(15):85-91. WANG J, LIAN Y L, HAN X F. Research and application of polyimide composites for aeroengine[J]. Aeronautical Manufacturing Technology, 2017, 60(15): 85-91 (in Chinese). [2] GRECK O, VIRICELLE J P, BAHLOUL-HOURLIER D, et al. SiC-based ceramic fibres: thermal stability and oxidation behaviour[J]. Key Engineering Materials, 1997, 132/133/134/135/136: 1950-1953. [3] LAMON J, R’MILI M. Damage and failure of SiC fiber tows during environment activated slow crack growth: residual behavior and strength-probability-time diagrams[J]. Acta Materialia, 2017, 131: 197-205. [4] YIN X W, CHENG L F, ZHANG L T, et al. Fibre-reinforced multifunctional SiC matrix composite materials[J]. International Materials Reviews, 2017, 62(3): 117-172. [5] ZHAO S, YANG Z C, ZHOU X G. Fracture behavior of SiC/SiC composites with different interfaces[J]. Journal of Inorganic Materials, 2016, 31(1): 58. [6] SANTORO U, NOVITSKAYA E, KARANDIKAR K, et al. Phase stability of SiC/SiC fiber reinforced composites: the effect of processing on the formation of α and β phases[J]. Materials Letters, 2019, 241: 123-127. [7] DONG S M, KATOH Y, KOHYAMA A. Processing optimization and mechanical evaluation of hot pressed 2D Tyranno-SA/SiC composites[J]. Journal of the European Ceramic Society, 2003, 23(8): 1223-1231. [8] SHI X G, LI M Y, MA W G, et al. Experimental study on thermal transport property of KD-II SiC fiber[J]. Journal of Inorganic Materials, 2018, 33(7): 756. [9] YAJIMA S, HAYASHI J, OMORI M, et al. Development of a silicon carbide fibre with high tensile strength[J]. Nature, 1976, 261(5562): 683-685. [10] ISHIKAWA T, KOHTOKU Y, KUMAGAWA K, et al. High-strength alkali-resistant sintered SiC fibre stable to 2 200 ℃[J]. Nature, 1998, 391(6669): 773-775. [11] VAHLAS C, MONTHIOUX M. On the thermal degradation of lox-M tyranno® fibres[J]. Journal of the European Ceramic Society, 1995, 15(5): 445-453. [12] BUNSELL A R, PIANT A. A review of the development of three generations of small diameter silicon carbide fibres[J]. Journal of Materials Science, 2006, 41(3): 823-839. [13] GOU Y Z, WANG H, JIAN K, et al. Preparation and characterization of SiC fibers with diverse electrical resistivity through pyrolysis under reactive atmospheres[J]. Journal of the European Ceramic Society, 2017, 37(2): 517-522. [14] 王堋人,苟燕子,王 浩.第三代SiC纤维及其在核能领域的应用现状[J].无机材料学报,2020,35(5):525-531. WANG P R, GOU Y Z, WANG H. Third generation SiC fibers for nuclear applications[J]. Journal of Inorganic Materials, 2020, 35(5): 525-531 (in Chinese). [15] RAMBERG C E, CRUCIANI G, SPEAR K E, et al. Passive-oxidation kinetics of high-purity silicon carbide from 800 ℃ to 1 100 ℃[J]. Journal of the American Ceramic Society, 1996, 79(11): 2897-2911. [16] OGBUJI L U J T, OPILA E J. A comparison of the oxidation kinetics of SiC and Si3N4[J]. Journal of the Electrochemical Society, 1995, 142(3): 925-930. [17] ÖNNEBY C, PANTANO C G. Silicon oxycarbide formation on SiC surfaces and at the SiC/SiO2 interface[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997, 15(3): 1597-1602. [18] DAS M K, LIPKIN L A. Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment: US7067176[P]. 2006-06-27. [19] RAYNAUD C. Silica films on silicon carbide: a review of electrical properties and device applications[J]. Journal of Non-Crystalline Solids, 2001, 280(1/2/3): 1-31. [20] YANG B, YU J S, GU Q C, et al. Research progress on preparation of SiCf/SiC composite[J]. Materials Reports, 2021, 35(3): 3050-3056. [21] DEAL B E, GROVE A S. General relationship for the thermal oxidation of silicon[J]. Journal of Applied Physics, 1965, 36(12): 3770-3778. [22] TAKEDA M, URANO A, SAKAMOTO J I, et al. Microstructure and oxidation behavior of silicon carbide fibers derived from polycarbosilane[J]. Journal of the American Ceramic Society, 2000, 83(5): 1171-1176. [23] 李 亮,简 科,王亦菲.惰性气氛下低氧碳化硅纤维结构和性能的演变[J].有机硅材料,2017,31(1):15-18. LI L, JIAN K, WANG Y F. Evolvement of structures and properties of silicon carbide fibers with low oxygen content under inert gas atmosphere[J]. Silicone Material, 2017, 31(1): 15-18 (in Chinese). [24] 李 亮,简 科,王亦菲.KD-I和KD-II连续SiC纤维在空气中的抗氧化性能研究[J].材料导报,2016,30(s2):308-312. LI L, JIAN K, WANG Y F. Study of oxidation resistance of KD-I and KD-II continuous SiC fibers in air[J]. Materials Review, 2016, 30(s2): 308-312 (in Chinese). [25] WILSON M, OPILA E. A review of SiC fiber oxidation with a new study of Hi-Nicalon SiC fiber oxidation[J]. Advanced Engineering Materials, 2016, 18(10): 1698-1709. [26] YANG C X, WU J J, DITTA A, et al. Effects of temperature and atmosphere on microstructural evolution and mechanical properties of KD-II SiC fibers[J]. Ceramics International, 2020, 46(15): 24424-24434. [27] HAY R S, FAIR G E, BOUFFIOUX R, et al. Hi-NicalonTM-S SiC fiber oxidation and scale crystallization kinetics[J]. Journal of the American Ceramic Society, 2011, 94(11): 3983-3991. [28] HAY R S, FAIR G E, HART A, et al. Kinetics of passive oxidation of Hi-Nicalon-S SiC fibers in wet air: relationships between SiO2 scale thickness, crystallization, and fiber strength (preprint)[R]. Defense Technical Information Center, 2012. [29] 王堋人.SA型SiC纤维烧结致密化机理及高温性能研究[D].长沙:国防科技大学,2020:82-96. WANG P R. Reasearch on sintering densification mechanism and high temperature properties of SA type SiC fiber[D]. Changsha: National University of Defense Technology, 2020: 82-96 (in Chinese). [30] 甘沅丰.KD-S纤维的微观组成结构调控及其高温蠕变性能研究[D].长沙:国防科技大学,2018:34-37. GAN Y F. The regulation of microscopic composition and microstructure of KD-S silicon carbide fibers and the research on these high-temperature creep resistance[D]. Changsha: National University of Defense Technology, 2018: 34-37 (in Chinese). [31] HAY R S, CHATER R J. Oxidation kinetics strength of Hi-NicalonTM-S SiC fiber after oxidation in dry and wet air[J]. Journal of the American Ceramic Society, 2017, 100(9): 4110-4130. [32] SHIMOO T, TOYODA F, OKAMURA K. Thermal stability of low-oxygen silicon carbide fiber (Hi-Nicalon) subjected to selected oxidation treatment[J]. Journal of the American Ceramic Society, 2000, 83(6): 1450-1456. [33] HAY R S, MOGILEVSKY P. Model for SiC fiber strength after oxidation in dry and wet air[J]. Journal of the American Ceramic Society, 2019, 102(1): 397-415. [34] 李 亮,毛仙鹤,简 科,等.低氧含量SiC纤维在模拟航空发动机环境中结构和性能[J].航空材料学报,2018,38(3):26-30. LI L, MAO X H, JIAN K, et al. Microstructure and mechanical properties of low oxygen content SiC fibers in simulated aeroengine circumstance[J]. Journal of Aeronautical Materials, 2018, 38(3): 26-30 (in Chinese). [35] SHIMOO T, MORISADA Y, OKAMURA K. Oxidation behavior of Si-C-O fibers (nicalon) under oxygen partial pressures from 102 to 105 Pa at 1 773 K[J]. Journal of the American Ceramic Society, 2000, 83(12): 3049-3056. [36] TAKEDA M, URANO A, SAKAMOTO J I, et al. Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type S[J]. Journal of Nuclear Materials, 1998, 258/259/260/261/262/263: 1594-1599. [37] MOGILEVSKY P, BOAKYE E E, HAY R S, et al. Monazite coatings on SiC fibers II: oxidation protection[J]. Journal of the American Ceramic Society, 2006, 89(11): 3481-3490. [38] VARADARAJAN S, PATTANAIK A K, SARIN V K. Mullite interfacial coatings for SiC fibers[J]. Surface and Coatings Technology, 2001, 139(2/3): 153-160. [39] BOAKYE E E, MOGILEVSKY P, PARTHASARATHY T A, et al. Monazite coatings on SiC fibers I: fiber strength and thermal stability[J]. Journal of the American Ceramic Society, 2006, 89(11): 3475-3480. [40] BAKLANOVA N I, TITOV A T, BORONIN A I, et al. The yttria-stabilized zirconia and interfacial coating on nicalonTM fiber[J]. Journal of the European Ceramic Society, 2006, 26(9): 1725-1736. [41] LI Y, CHEN M L, ZHANG Q Z, et al. Microstructure and corrosion behavior of in situ grown Y3Si2C2 coated SiC fibers exposed to air and wet-oxygen at 1 400 ℃[J]. Journal of the European Ceramic Society, 2022, 42(8): 3427-3436. |