[1] 臧朝会,杨树桐,金亮亮.海水海砂混凝土双K断裂参数的确定[J].海洋工程,2019,37(4):142-150. ZANG C H, YANG S T, JIN L L. Determination of double K fracture parameters of seawater sea sand concrete[J]. The Ocean Engineering, 2019, 37(4): 142-150 (in Chinese). [2] 王乾峰,刘云贺,彭 刚.有压水环境中的混凝土动态抗压性能试验研究[J].实验力学,2017,32(3):385-396. WANG Q F, LIU Y H, PENG G. Experimental study of dynamic compression properties of concrete subjected to water pressure[J]. Journal of Experimental Mechanics, 2017, 32(3): 385-396 (in Chinese). [3] 王海龙,田 宇,银文文,等.不同湿度混凝土动力抗压性能数值模拟分析[J].水利学报,2020,51(4):421-429. WANG H L, TIAN Y, YIN W W, et al. Numerical simulation on the dynamic compressive performances of concretes with different water contents[J]. Journal of Hydraulic Engineering, 2020, 51(4): 421-429 (in Chinese). [4] 谭 聪,李宗利,韩进生,等.不同强度等级和尺寸混凝土自由吸水规律研究[J].混凝土,2019(11):34-38. TAN C, LI Z L, HAN J S, et al. Study on free absorption of concrete with different strength grades and sizes[J]. Concrete, 2019(11): 34-38 (in Chinese). [5] 邓友生,王 欢,吕 泳,等.含水率对湿态混凝土抗压性能影响[J].混凝土,2017(7):66-69. DENG Y S, WANG H, LÜ Y, et al. Effect of moisture content on the compressive properties of wet concrete[J]. Concrete, 2017(7): 66-69 (in Chinese). [6] 张国辉,李宗利.加载速率对湿态混凝土强度的影响[J].建筑材料学报,2017,20(4):616-622. ZHANG G H, LI Z L. Strength of wet concrete under different loading rates[J]. Journal of Building Materials, 2017, 20(4): 616-622 (in Chinese). [7] 王海龙,银文文,程旭东,等.地震应变率下水饱和度对混凝土动力压缩效应的影响[J].水利学报,2019,50(2):225-232. WANG H L, YIN W W, CHENG X D, et al. Influence of water content on dynamic compressive properties of concrete subjected to seismic strain rate[J]. Journal of Hydraulic Engineering, 2019, 50(2): 225-232 (in Chinese). [8] 韩 阳,刘红彪,刘现鹏.海洋环境下湿态混凝土力学性能时变规律研究[J].水道港口,2020,41(3):318-323. HAN Y, LIU H B, LIU X P. Study on time-varying law of mechanical properties of wet concrete in the marine environment[J]. Journal of Waterway and Harbor, 2020, 41(3): 318-323 (in Chinese). [9] HUANG Y Y, XIAO L, ZHOU Y, et al. How first-immersion age affects wet expansion of dam concrete: an experimental study[J]. International Journal of Civil Engineering, 2021, 19(4): 441-451. [10] LU Y Y, ZHU T, LI S, et al. Bond behavior of wet-bonded carbon fiber-reinforced polymer-concrete interface subjected to moisture[J]. International Journal of Polymer Science, 2018, 2018: 3120545. [11] 刘志洪,胡 昱,邬 昆,等.低热水泥混凝土早龄期断裂性能发展特性研究[J].人民长江,2022,53(1):175-181. LIU Z H, HU Y, WU K, et al. Study on fracture development characteristics of low-heat cement concrete at early age[J]. Yangtze River, 2022, 53(1): 175-181 (in Chinese). [12] 徐慧颖,卜静武,吴新宇.不同缝高比大坝混凝土断裂性能及声发射特性[J].水电能源科学,2022,40(3):100-104. XU H Y, BU J W, WU X Y. Fracture performance and acoustic emission characteristics of dam concrete with different crack-depth ratios[J]. Water Resources and Power, 2022, 40(3): 100-104 (in Chinese). [13] 王 洋,胡少伟,范向前,等.静水压力下混凝土断裂韧度率相关性分析[J].混凝土,2021(12):20-26. WANG Y, HU S W, FAN X Q, et al. Rate dependence of concrete fracture toughness under water pressure[J]. Concrete, 2021(12): 20-26 (in Chinese). [14] 皇 民,赵玉如,蔺世豪,等.冻融循环下BFRPC断裂性能损伤分析[J].混凝土,2021(12):31-35. HUANG M, ZHAO Y R, LIN S H, et al. Study on fracture damage of BFRPC under freeze-thaw cycles[J]. Concrete, 2021(12): 31-35 (in Chinese). [15] 高小峰,杜 敏,胡 昱,等.白鹤滩大坝低热水泥混凝土断裂性能试验研究[J].浙江工业大学学报,2021,49(6):664-668+698. GAO X F, DU M, HU Y, et al. Experimental study on fracture properties of low heat cement concrete of Baihetan Dam[J]. Journal of Zhejiang University of Technology, 2021, 49(6): 664-668+698 (in Chinese). [16] XU S L, LI Q H, WU Y, et al. Results of round-robin testing for determining the double-K fracture parameters for crack propagation in concrete: technical report of the RILEM TC265-TDK[J]. Materials and Structures, 2021, 54(6): 221. [17] 刘恒杰,李宗利,谭 聪,等.不同含水率混凝土断裂过程声发射试验研究[J].工程科学与技术,2020,52(6):153-161. LIU H J, LI Z L, TAN C, et al. Experimental study on influence of different moisture contents on fracture acoustic emission characteristics of concrete[J]. Advanced Engineering Sciences, 2020, 52(6): 153-161 (in Chinese). [18] 张国辉,李宗利,聂抗义,等.不同含水率混凝土断裂韧度试验研究[J].水力发电学报,2016,35(2):109-116. ZHANG G H, LI Z L, NIE K Y, et al. Experimental study on fracture toughness of concrete with different moisture contents[J]. Journal of Hydroelectric Engineering, 2016, 35(2): 109-116 (in Chinese). [19] 胡少伟,胡 鑫,范 冰.混凝土缺陷形状对楔入劈拉断裂性能的影响[J].水电能源科学,2019,37(8):110-113. HU S W, HU X, FAN B. Effect of defect shape on fracture characteristics of concrete wedge splitting[J]. Water Resources and Power, 2019, 37(8): 110-113 (in Chinese). [20] 国家能源局.水工混凝土配合比设计规程:DL/T 5330—2015[S].北京:中国电力出版社,2015. National Energy Administration. Code for mix design of hydraulic concrete: DL/T 5330—2015[S]. Beijing: China Electric Power Press, 2015 (in Chinese). [21] 国家发展和改革委员会.水工混凝土断裂试验规程(附条文说明):DL/T 5332—2005[S].北京:中国电力出版社,2006. National Development and Reform Commission. Hydraulic concrete fracture test regulations (with text description): DL/T 5332—2005[S]. Beijing: China Electric Power Press, 2006 (in Chinese). [22] HOU D S, MA H Y, ZHU Y, et al. Calcium silicate hydrate from dry to saturated state: structure, dynamics and mechanical properties[J]. Acta Materialia, 2014, 67: 81-94. [23] 侯东帅,于 娇,张津瑞,等.基于反应力场分子动力学的水化硅酸钙水解弱化机理研究[J].水利学报,2021,52(1):34-41. HOU D S, YU J, ZHANG J R, et al. Insights on hydrolysis weakening of calcium silicate hydrate: a ReaxFF molecular dynamics study[J]. Journal of Hydraulic Engineering, 2021, 52(1): 34-41 (in Chinese). |