[1] NAKATA K, FUJISHIMA A. TiO2 photocatalysis: design and applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169-189. [2] TANG A D, JIA Y R, ZHANG S Y, et al. Synthesis, characterization and photocatalysis of AgAlO2/TiO2 heterojunction with sunlight irradiation[J]. Catalysis Communications, 2014, 50: 1-4. [3] CHEN Y, GAO H Y, WEI D M, et al. Langmuir-Blodgett assembly of visible light responsive TiO2 nanotube arrays/graphene oxide heterostructure[J]. Applied Surface Science, 2017, 392: 1036-1042. [4] GAO G Q, ZHU Q, CHONG H B, et al. Synthesis of biphasic defective TiO2-x/reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity[J]. Chemical Research in Chinese Universities, 2018, 34(2): 158-163. [5] CHEN D J, CHENG Y L, ZHOU N, et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review[J]. Journal of Cleaner Production, 2020, 268: 121725. [6] 李 瑞,张 潇,张璐璐,等.原位合成Bi3O4Br/Bi12O17Br2光催化剂及其对磺胺甲噁唑降解性能[J].人工晶体学报,2021,50(9):1735-1744. LI R, ZHANG X, ZHANG L L, et al. In-situ preparation of Bi3O4Br/Bi12O17Br2 photocatalyst and their degradation performances of sulfamethoxazole[J]. Journal of Synthetic Crystals, 2021, 50(9): 1735-1744 (in Chinese). [7] SATO S. Photocatalytic activity of NOx-doped TiO2 in the visible light region[J]. Chemical Physics Letters, 1986, 123(1/2): 126-128. [8] WANG Z C, SONG Y C, CAI X F, et al. Rapid preparation of terbium-doped titanium dioxide nanoparticles and their enhanced photocatalytic performance[J]. Royal Society Open Science, 2019, 6(10): 191077. [9] GHARBI N, PRESSAC M, HADCHOUEL M, et al. [60]Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity[J]. Nano Letters, 2005, 5(12): 2578-2585. [10] CHLISTUNOFF J, CLIFFEL D, BARD A J. Electrochemistry of fullerene films[J]. Thin Solid Films, 1995, 257(2): 166-184. [11] WANG S Y, LIU C W, DAI K, et al. Fullerene C70-TiO2 hybrids with enhanced photocatalytic activity under visible light irradiation[J]. Journal of Materials Chemistry A, 2015, 3(42): 21090-21098. [12] KUZNIETSOVA H M, DZIUBENKO N V, LYNCHAK O V, et al. Effects of pristine C60 fullerenes on liver and pancreas in α-naphthylisothiocyanate-induced cholangitis[J]. Digestive Diseases and Sciences, 2020, 65(1): 215-224. [13] LIU L P, LIU X L, CHAI Y Q, et al. Surface modification of TiO2 nanosheets with fullerene and zinc-phthalocyanine for enhanced photocatalytic reduction under solar-light irradiation[J]. Science China Materials, 2020, 63(11): 2251-2260. [14] XIE R B, WANG Z F, YU H T, et al. Highly water-soluble and surface charge-tunable fluorescent fullerene nanoparticles: facile fabrication and cellular imaging[J]. Electrochimica Acta, 2016, 201: 220-227. [15] CEBALLOS-CHUC M C, RAMOS-CASTILLO C M, ALVARADO-GIL J J, et al. Influence of brookite impurities on the Raman spectrum of TiO2 anatase nanocrystals[J]. The Journal of Physical Chemistry C, 2018, 122(34): 19921-19930. [16] JAVED ANSARI M, SOLTANI A, RAMEZANITAGHARTAPEH M, et al. Improved antibacterial activity of sulfasalazine loaded fullerene derivative: computational and experimental studies[J]. Journal of Molecular Liquids, 2022, 348: 118083. [17] FANG J, BI X Z, SI D J, et al. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides[J]. Applied Surface Science, 2007, 253(22): 8952-8961. [18] TRENTLER T J, DENLER T E, BERTONE J F, et al. Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions[J]. Journal of the American Chemical Society, 1999, 121(7): 1613-1614. [19] CONG Y, ZHANG J L, CHEN F, et al. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity[J]. The Journal of Physical Chemistry C, 2007, 111(19): 6976-6982. [20] CHI M Y, SUN X N, LOZANO-BLANCO G, et al. XPS and FTIR investigations of the transient photocatalytic decomposition of surface carbon contaminants from anatase TiO2 in UHV starved water/oxygen environments[J]. Applied Surface Science, 2021, 570: 151147. [21] ELEUTÉRIO T, SÉRIO S, TEODORO O M N D, et al. XPS and FTIR studies of DC reactive magnetron sputtered TiO2 thin films on natural based-cellulose fibers[J]. Coatings, 2020, 10(3): 287. [22] IHARA T, MIYOSHI M, IRIYAMA Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping[J]. Applied Catalysis B: Environmental, 2003, 42(4): 403-409. [23] 乔 畅,冀健龙,张文栋,等.富勒醇的制备与性能研究[J].化工新型材料,2016,44(11):223-225. QIAO C, JI J L, ZHANG W D, et al. Preparation and properties of polyhydroxylated fullerenes[J]. New Chemical Materials, 2016, 44(11): 223-225 (in Chinese). [24] XU T, WANG M, WANG T. Effects of N doping on the microstructures and optical properties of TiO2[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2019, 34(1): 55-63. [25] SAIT R, GOVINDARAJAN S, CROSS R. Nitridation of optimised TiO2 nanorods through PECVD towards neural electrode application[J]. Materialia, 2018, 4: 127-138. [26] 刘 民,徐连鸣,毛永强.N掺杂介孔TiO2的制备及光催化性能研究[J].硅酸盐通报,2019,38(3):771-776. LIU M, XU L M, MAO Y Q. Study on preparation and photocatalytic properties of N-doped mesoporous TiO2[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 771-776 (in Chinese). [27] NGUYEN T P, LE TRI NGUYEN D, NGUYEN V H, et al. Recent advances in TiO2-based photocatalysts for reduction of CO2 to fuels[J]. Nanomaterials (Basel, Switzerland), 2020, 10(2): 337. |