[1] PASHIGREVA A V, KONDRATIEVA E, BERMEJO-DEVAL R, et al. Methanol thiolation over Al2O3 and WS2 catalysts modified with cesium[J]. Journal of Catalysis, 2017, 345: 308-318. [2] ZHANG Y H, CHEN S P, WU M, et al. Promoting effect of SiO2 on the K2WO4/Al2O3 catalysts for methanethiol synthesis from methanol and H2S[J]. Catalysis Communications, 2012, 22: 48-51. [3] WANG W M, LI Y, ZHANG X, et al. Catalytic synthesis of methanethiol from methanol and carbon disulfide over KW/Al2O3 catalysts[J]. Catalysis Communications, 2015, 69: 104-108. [4] WEBER-STOCKBAUER M, GUTIÉRREZ O Y, BERMEJO-DEVAL R, et al. Cesium induced changes in the acid-base properties of metal oxides and the consequences for methanol thiolation[J]. ACS Catalysis, 2019, 9(10): 9245-9252. [5] 陈爱平.钼基催化剂上的高硫合成气制甲硫醇的研究[D].厦门:厦门大学,2008. CHEN A P. Study on the synthesis of methanethiol from H2S-rich syngas over Mo-based catalysts[D]. Xiamen: Xiamen University, 2008 (in Chinese). [6] TREJDA M, TUEL A, KUJAWA J, et al. Niobium rich SBA-15 materials-preparation, characterisation and catalytic activity[J]. Microporous and Mesoporous Materials, 2008, 110(2/3): 271-278. [7] TREJDA M, KUJAWA J, ZIOLEK M. Iron modified MCM-41 materials characterised by methanol oxidation and sulphurisation reactions[J]. Catalysis Letters, 2006, 108(3/4): 141-146. [8] MAUGÉ F, SAHIBED-DINE A, GAILLARD M, et al. Modification of the acidic properties of NaY zeolite by H2S adsorption: an infrared study[J]. Journal of Catalysis, 2002, 207(2): 353-360. [9] ZIOLEK M, SOBCZAK I, NOWAK I, et al. Nb-containing mesoporous molecular sieves: a possible application in the catalytic processes[J]. Microporous and Mesoporous Materials, 2000, 35/36: 195-207. [10] 王 琪,郝影娟,陈爱平,等.高硫合成气制甲硫醇K2MoO4/SiO2催化剂的研究Ⅰ.镍的促进作用[J].化学反应工程与工艺,2009,25(1):84-87+92. WANG Q, HAO Y J, CHEN A P, et al. Study on the K2MoO4/SiO2 catalysts promoted by nickel for methanethiol synthesis from high H2S-containing syngas[J]. Chemical Reaction Engineering and Technology, 2009, 25(1): 84-87+92 (in Chinese). [11] PASKACH T J, SCHRADER G L, MCCARLEY R E. Synthesis of methanethiol from methanol over reduced molybdenum sulfide catalysts based on the Mo6S8 cluster[J]. Journal of Catalysis, 2002, 211(2): 285-295. [12] NOWAK I, ZIOLEK M. Niobium compounds: preparation, characterization, and application in heterogeneous catalysis[J]. Chemical Reviews, 1999, 99(12): 3603-3624. [13] ZIOLEK M, KUJAWA J, CZYZNIEWSKA J, et al. Effect on the reaction between methanol and hydrogen sulphide of Na or Mo doping on zirconia and alumina[J]. Applied Catalysis A: General, 1998, 171(1): 109-115. [14] MASHKINA A V. Heterogeneous catalytic synthesis of alkanethiols and dialkyl sulfides from alcohols and hydrogen sulfide[J]. Russian Chemical Reviews, 1995, 64(12): 1131-1147. [15] 张元华,袁成龙,陈世萍,等.磷助剂对K2WO4/Al2O3催化合成甲硫醇的影响[J].石油化工,2012,41(12):1357-1362. ZHANG Y H, YUAN C L, CHEN S P, et al. Effects of phosphorus promoter on K2WO4/A12O3 catalysts for synthesis of methanethiol[J]. Petrochemical Technology, 2012, 41(12): 1357-1362 (in Chinese). [16] KAUPPI E I, RÖNKKÖNEN E H, LAHTINEN J, et al. Promoting effect of H2S on the performance of ZrO2 and La2O3-ZrO2 catalysts in biomass gasification gas clean-up[J]. Applied Catalysis A: General, 2018, 556: 172-179. [17] ZIOLEK M, SAUR O, LAMOTTE J, et al. FTIR study of adsorption and transformation of methanethiol and dimethyl sulfide on zirconia[J]. Journal of the Chemical Society, Faraday Transactions, 1994, 90(7): 1029. [18] ZIÓŁEK M, BRESIŃSKA I. Reactions of alcohols with hydrogen sulphide over zeolites. i. Activity of H, Na-Y zeolites in CH3OH+H2S reaction[J]. Zeolites, 1985, 5(4): 245-250. [19] VALECILLOS J, EPELDE E, ALBO J, et al. Slowing down the deactivation of H-ZSM-5 zeolite catalyst in the methanol-to-olefin (MTO) reaction by P or Zn modifications[J]. Catalysis Today, 2020, 348: 243-256. [20] BLEKEN F L, BARBERA K, BONINO F, et al. Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons[J]. Journal of Catalysis, 2013, 307: 62-73. [21] YAMAGUCHI T, JIN T, TANABE K. Structure of acid sites on sulfur-promoted iron oxide[J]. The Journal of Physical Chemistry, 1986, 90(14): 3148-3152. [22] YAN G X, WANG A Q, WACHS I E, et al. Critical review on the active site structure of sulfated zirconia catalysts and prospects in fuel production[J]. Applied Catalysis A: General, 2019, 572: 210-225. |