[1] CHANG Y S, LEE J, YOON H. Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook[J]. Energy Policy, 2012, 50: 154-160. [2] 许 毛,张 贤,樊静丽,等.我国煤制氢与CCUS技术集成应用的现状、机遇与挑战[J].矿业科学学报,2021,6(6):659-666. XU M, ZHANG X, FAN J L, et al. Status quo, opportunities and challenges of integrated application of coal-to-hydrogen and CCUS technology in China[J]. Journal of Mining Science and Technology, 2021, 6(6): 659-666 (in Chinese). [3] GLEICK P H. Erratum: climate change and the integrity of science (science (689)) (erratum)[J]. Science, 2010(5980): 826. [4] BACHU S. CO2 storage in geological media: role, means, status and barriers to deployment[J]. Progress in Energy and Combustion Science, 2008, 34(2): 254-273. [5] BRANDÅO N B, ROEHL D, DE ANDRADE S F, et al. The impact of cement slurry aging creep on the construction process of oil wells[J]. Journal of Petroleum Science and Engineering, 2017, 157: 422-429. [6] 秦积舜,李永亮,吴德斌,等.CCUS全球进展与中国对策建议[J].油气地质与采收率,2020,27(1):20-28. QIN J S, LI Y L, WU D B, et al. CCUS global progress and China's policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 20-28 (in Chinese). [7] 卢雪梅.CCUS在油气行业应用进展[J].石油与天然气地质,2021,42(4):762. LU X M. Application progress of CCUS in oil and gas industry[J]. Oil & Gas Geology, 2021, 42(4): 762 (in Chinese). [8] OMOSEBI O, MAHESHWARI H, AHMED R, et al. Degradation of well cement in HPHT acidic environment: effects of CO2 concentration and pressure[J]. Cement and Concrete Composites, 2016, 74: 54-70. [9] OMOSEBI O, MAHESHWARI H, AHMED R, et al. Investigating temperature effect on degradation of well cement in HPHT carbonic acid environment[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1344-1362. [10] DONG S J, BERELSON W M, ROLLINS N E, et al. Aragonite dissolution kinetics and calcite/aragonite ratios in sinking and suspended particles in the North Pacific[J]. Earth and Planetary Science Letters, 2019, 515: 1-12. [11] SÁNCHEZ-HERRERO M J, FERNNDEZ-JIMÁNEZ A, PALOMO É. Alkaline hydration of C2S and C3S[J]. Journal of the American Ceramic Society, 2016, 99(2): 604-611. [12] CUESTA A, ZEA-GARCIA J D, LONDONO-ZULUAGA D, et al. Multiscale understanding of tricalcium silicate hydration reactions[J]. Scientific Reports, 2018, 8: 8544. [13] MEI K Y, CHENG X W, ZHANG H, et al. The coupled reaction and crystal growth mechanism of tricalcium silicate (C3S): an experimental study for carbon dioxide geo-sequestration wells[J]. Construction and Building Materials, 2018, 187: 1286-1294. [14] GU T, GUO X Y, LI Z Y, et al. Coupled effect of CO2 attack and tensile stress on well cement under CO2 storage conditions[J]. Construction and Building Materials, 2017, 130: 92-102. [15] BAI M X, SUN J P, SONG K P, et al. Well completion and integrity evaluation for CO2 injection wells[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 556-564. [16] WEICHMANN M J, REINICKE K M. Risk assessment of abandoned wells affected by CO2[J]. Erdol Erdgas Kohle, 2016(9): A125-A129. [17] BAI M X, ZHANG Z C, FU X F. A review on well integrity issues for CO2 geological storage and enhanced gas recovery[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 920-926. [18] KLIMAVICIUS V, HILBIG H, GUTMANN T, et al. Direct observation of carbonate formation in partly hydrated tricalcium silicate by dynamic nuclear polarization enhanced NMR spectroscopy[J]. The Journal of Physical Chemistry C, 2021, 125(13): 7321-7328. [19] WANG D, XIONG C, LI W Z, et al. Growth of calcium carbonate induced by accelerated carbonation of tricalcium silicate[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(39): 14718-14731. [20] MEI K Y, CHENG X W, GU T, et al. Effects of Fe and Al ions during hydrogen sulphide (H2S)-induced corrosion of tetracalcium aluminoferrite (C4AF) and tricalcium aluminate (C3A)[J]. Journal of Hazardous Materials, 2021, 403: 123928. [21] GOMEZ-VILLALBA L S, LÓPEZ-ARCE P, DE BUERGO M A, et al. Atomic defects and their relationship to aragonite-calcite transformation in portlandite nanocrystal carbonation[J]. Crystal Growth & Design, 2012, 12(10): 4844-4852. [22] 郭辛阳,宋雨媛,秦 川,等.二氧化碳埋存条件下油井水泥石腐蚀的热力学模拟[J].中国石油大学学报(自然科学版),2020,44(5):70-78. GUO X Y, SONG Y Y, QIN C, et al. Thermodynamic simulation of oilwell cement degradation under carbon dioxide sequestration condition[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(5): 70-78 (in Chinese). [23] 郭辛阳,宋雨媛,吴广军,等.二氧化碳埋存条件下油井水泥石腐蚀的热力学分析[J].硅酸盐学报,2020,48(8):1233-1239. GUO X Y, SONG Y Y, WU G J, et al. Thermodynamic analysis of oilwell set-cement degradation under carbon dioxide sequestration condition[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1233-1239 (in Chinese). [24] 岳家平,武治强,王晓亮,等.水泥石防H2S/CO2腐蚀机理及防治措施[J].当代化工,2020,49(9):2033-2036. YUE J P, WU Z Q, WANG X L, et al. Mechanism and prevention measures of H2S/CO2 corrosion for cement paste[J]. Contemporary Chemical Industry, 2020, 49(9): 2033-2036 (in Chinese). [25] GROVES G W, BROUGH A, RICHARDSON I G, et al. Progressive changes in the structure of hardened C3S cement pastes due to carbonation[J]. Journal of the American Ceramic Society, 1991, 74(11): 2891-2896. [26] DOLADO J S, ZHU W, HERNÁNDEZ M S, et al. Textural and mechanical characterization of C-S-H gels from hydration of synthetic T1-C3S, β-C2S and their blends[J]. Materiales de Construccion, 2011: 169-183. [27] 张济涛,耿 健,李 东,等.蒸养条件下硅酸三钙(C3S)水化热动力学特性研究[J].材料导报,2021,35(8):8064-8069. ZHANG J T, GENG J, LI D, et al. Thermodynamics and kinetics study of tricalcium silicate (C3S) under steam curing[J]. Materials Reports, 2021, 35(8): 8064-8069 (in Chinese). [28] 罗 力,张一敏,包申旭.掺杂对高C3S水泥熟料烧成及C3S形成动力学的影响[J].硅酸盐通报,2016,35(7):2024-2028. LUO L, ZHANG Y M, BAO S X. Effect of foreign ions on the sintering of high C3S cement clinker and formation kinetics of C3S[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(7): 2024-2028 (in Chinese). [29] KNOPF F C, ROY A, SAMROW H A, et al. High-pressure molding and carbonation of cementitious materials[J]. Industrial & Engineering Chemistry Research, 1999, 38(7): 2641-2649. [30] REARDON E J, JAMES B R, ABOUCHAR J. High pressure carbonation of cementitious grout[J]. Cement and Concrete Research, 1989, 19(3): 385-399. [31] SHAH V, SCRIVENER K, BHATTACHARJEE B, et al. Changes in microstructure characteristics of cement paste on carbonation[J]. Cement and Concrete Research, 2018, 109: 184-197. [32] JIMOH O A, ARIFFIN K S, HUSSIN H B, et al. Synthesis of precipitated calcium carbonate: a review[J]. Carbonates and Evaporites, 2018, 33(2): 331-346. [33] CHESHIRE M C, STACK A G, CAREY J W, et al. Wellbore cement porosity evolution in response to mineral alteration during CO2 flooding[J]. Environmental Science & Technology, 2017, 51(1): 692-698. [34] 吴后选,谢梅兰,周小敏,等.养护温度对C3S-C3A浆体微结构的影响[J].武汉理工大学学报,2021,43(12):18-22+27. WU H X, XIE M L, ZHOU X M, et al. Effect of curing temperature on microstructure of C3S-C3A paste[J]. Journal of Wuhan University of Technology, 2021, 43(12): 18-22+27 (in Chinese). [35] AUROY M, POYET S, LE BESCOP P, et al. Impact of carbonation on unsaturated water transport properties of cement-based materials[J]. Cement and Concrete Research, 2015, 74: 44-58. [36] 曲秀英.扩散系数实验技术研究[J].大庆石油地质与开发,2012,31(4):46-49. QU X Y. Studies on the experimental technique of diffusion coefficient[J]. Petroleum Geology & Oilfield Development in Daqing, 2012, 31(4): 46-49 (in Chinese). [37] 张俊芝,王建泽,孔德玉,等.水工混凝土氯离子侵蚀及扩散系数的随机模型[J].人民长江,2008,39(11):105-108. ZHANG J Z, WANG J Z, KONG D Y, et al. The stochastic model of chloride ion erosion and diffusion coefficient of hydraulic concrete[J]. Yangtze River, 2008, 39(11): 105-108 (in Chinese). [38] 孙国文,孙 伟,王彩辉.现代混凝土传输行为与其微结构之间关系的研究方法及其进展[J].材料导报,2018,32(17):3010-3022. SUN G W, SUN W, WANG C H. Relationship between the transport behavior of modern concrete and its microstructures: research methods and progress[J]. Materials Review, 2018, 32(17): 3010-3022 (in Chinese). [39] 邸 元,吴玉树,鞠斌山.裂缝性油藏二氧化碳驱的多组分数值计算模型[J].西南石油大学学报(自然科学版),2015,37(2):93-100. DI Y, WU Y S, JU B S. Model formulation for compositional numerical simulation of CO2 flooding in fractured reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(2): 93-100 (in Chinese). |