硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (8): 2604-2617.
耿圆洁1,2, 孙丛涛2,3,4, 孙明2,3, 张余果2,3,5, 段继周2,3
收稿日期:
2022-03-19
修回日期:
2022-05-12
出版日期:
2022-08-15
发布日期:
2022-08-30
通讯作者:
孙丛涛,博士,高级工程师。E-mail:suncongtao@qdio.ac.cn
作者简介:
耿圆洁(1997—),女,硕士研究生。主要从事钢筋混凝土耐久性研究。E-mail:1546585271@qq.com
基金资助:
GENG Yuanjie1,2, SUN Congtao2,3,4, SUN Ming2,3, ZHANG Yuguo2,3,5, DUAN Jizhou2,3
Received:
2022-03-19
Revised:
2022-05-12
Online:
2022-08-15
Published:
2022-08-30
摘要: 水泥基材料的氯离子结合能力主要取决于水化硅酸钙(C-S-H)凝胶和Friedel's盐的含量及其稳定性,两者的含量越高、稳定性越好,水泥基材料的氯离子结合能力越强。对水泥基材料氯离子结合能力的分析需考虑多种因素的影响,如水泥种类、矿物掺合料种类、温度、氯离子浓度、阳离子类型、硫酸盐侵蚀和碳化等因素,它们会通过直接影响C-S-H凝胶和Friedel's盐的生成量,或间接影响孔隙液pH值和离子浓度改变C-S-H凝胶和Friedel's盐的稳定性,进而影响其物理吸附能力与化学结合能力,促使氯离子重新结合或释放,导致氯离子结合能力变化显著。本文综述了上述影响因素下,水泥基材料中C-S-H凝胶和Friedel's盐含量、稳定性的变化,及其对氯离子结合能力的影响,并为今后的研究方向提出了建议。
中图分类号:
耿圆洁, 孙丛涛, 孙明, 张余果, 段继周. 水泥基材料氯离子结合机理及影响因素研究综述[J]. 硅酸盐通报, 2022, 41(8): 2604-2617.
GENG Yuanjie, SUN Congtao, SUN Ming, ZHANG Yuguo, DUAN Jizhou. Review on Mechanism of Chloride Ion Binding and Its Influencing Factors in Cement-Based Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(8): 2604-2617.
[1] RAJAMALLU C, REDDY T C, ARUNAKANTHI E. Service life prediction of self compacted concretes with respect to chloride ion penetration[J]. Materials Today: Proceedings, 2021, 46: 677-681. [2] MAAGE M, HELLAND S, POULSEN E, et al. Service life prediction of existing concrete structures exposed to marine environment[J]. ACI Materials Journal, 1996, 93(6): 602-608. [3] COSTA A, APPLETON J. Case studies of concrete deterioration in a marine environment in Portugal[J]. Cement and Concrete Composites, 2002, 24(1): 169-179. [4] FELDMAN R F, BEAUDOIN J J, PHILIPOSE K E. Durable concrete for a waste repository-measurement of ionic ingress[J]. MRS Proceedings, 1989, 176: 129. [5] PAGE C L, TREADAWAY K W J. Aspects of the electrochemistry of steel in concrete[J]. Nature, 1982, 297(5862): 109-115. [6] YUAN Q, SHI C J, DE SCHUTTER G, et al. Chloride binding of cement-based materials subjected to external chloride environment: a review[J]. Construction and Building Materials, 2009, 23(1): 1-13. [7] TUUTTI K. Corrosion of steel in concrete[D]. Sweden: Lund University, 1982. [8] OH B H, JANG S Y. Effects of material and environmental parameters on chloride penetration profiles in concrete structures[J]. Cement and Concrete Research, 2007, 37(1): 47-53. [9] HAN S H. Influence of diffusion coefficient on chloride ion penetration of concrete structure[J]. Construction and Building Materials, 2007, 21(2): 370-378. [10] BODDY A, BENTZ E, THOMAS M D A, et al. An overview and sensitivity study of a multimechanistic chloride transport model[J]. Cement and Concrete Research, 1999, 29(6): 827-837. [11] TANG L P, NILSSON L O. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cement and Concrete Research, 1993, 23(2): 247-253. [12] ZIBARA H. Binding of external chlorides by cement pastes[D]. Canada: University of Toronto, 2001. [13] JAIN A, GENCTURK B, PIRBAZARI M, et al. Influence of pH on chloride binding isotherms for cement paste and its components[J]. Cement and Concrete Research, 2021, 143: 106378. [14] SHEN X H, JIANG W Q, HOU D S, et al. Numerical study of carbonation and its effect on chloride binding in concrete[J]. Cement and Concrete Composites, 2019, 104: 103402. [15] 王小刚,史才军,何富强,等.氯离子结合及其对水泥基材料微观结构的影响[J].硅酸盐学报,2013,41(2):187-198. WANG X G, SHI C J, HE F Q, et al. Chloride binding and its effects on microstructure of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2013, 41(2): 187-198 (in Chinese). [16] LOTHENBACH B, WINNEFELD F. Thermodynamic modelling of the hydration of Portland cement[J]. Cement and Concrete Research, 2006, 36(2): 209-226. [17] CHEN J J, THOMAS J J, TAYLOR H F W, et al. Solubility and structure of calcium silicate hydrate[J]. Cement and Concrete Research, 2004, 34(9): 1499-1519. [18] ZHOU Y, HOU D S, JIANG J Y, et al. Chloride ions transport and adsorption in the nano-pores of silicate calcium hydrate: experimental and molecular dynamics studies[J]. Construction and Building Materials, 2016, 126: 991-1001. [19] RICHARDSON I G. The nature of C-S-H in hardened cements[J]. Cement and Concrete Research, 1999, 29(8): 1131-1147. [20] MA H Y, LI Z J. Realistic pore structure of Portland cement paste: experimental study and numerical simulation[J]. Computers & Concrete, 2013, 11(4): 317-336. [21] HIRAO H, YAMADA K, TAKAHASHI H, et al. Chloride binding of cement estimated by binding isotherms of hydrates[J]. Journal of Advanced Concrete Technology, 2005, 3(1): 77-84. [22] ELAKNESWARAN Y, NAWA T, KURUMISAWA K. Electrokinetic potential of hydrated cement in relation to adsorption of chlorides[J]. Cement and Concrete Research, 2009, 39(4): 340-344. [23] 郭丽萍,费香鹏,曹园章,等.氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J].材料导报,2021,35(8):8034-8041. GUO L P, FEI X P, CAO Y Z, et al. Molecular kinetics of competitive adsorption of chloride and sulphate ions on C-S-H surface[J]. Materials Reports, 2021, 35(8): 8034-8041 (in Chinese). [24] RAMACHANDRAN V S. Possible states of chloride in the hydration of tricalcium silicate in the presence of calcium chloride[J]. Matériaux et Construction, 1971, 4(1): 3-12. [25] MA J Y, LI Z B, ZHANG Y, et al. Desilication of sodium aluminate solution by Friedel's salt (FS: 3CaO·A12O3·CaCl2·10H2O)[J]. Hydrometallurgy, 2009, 99(3/4): 225-230. [26] SURYAVANSHI A K, SWAMY R N. Stability of Friedel's salt in carbonated concrete structural elements[J]. Cement and Concrete Research, 1996, 26(5): 729-741. [27] BEN-YAIR M. The effect of chlorides on concrete in hot and arid regions[J]. Cement and Concrete Research, 1974, 4(3): 405-416. [28] 邢 锋,刘 军,董必钦,等.海砂型氯离子与水泥胶体的结合和机理[J].东南大学学报(自然科学版),2006,36(s2):167-172. XING F, LIU J, DONG B Q, et al. Combination procedure and mechanism of sea sand type chlorine ions with cement materials[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(s2): 167-172 (in Chinese). [29] 马宏强,易 成,朱红光,等.辅助胶凝材料对硬化水泥浆体结合氯离子的影响综述[J].材料导报,2018,32(s1):469-474. MA H Q, YI C, ZHU H G, et al. Effect of auxiliary cementitious materials on the hardened cement paste chloride binding: an overview[J]. Materials Review, 2018, 32(s1): 469-474 (in Chinese). [30] SURYAVANSHI A K, SCANTLEBURY J D, LYON S B. Mechanism of Friedel's salt formation in cements rich in tri-calcium aluminate[J]. Cement and Concrete Research, 1996, 26(5): 717-727. [31] BALONIS M, LOTHENBACH B, LE SAOUT G, et al. Impact of chloride on the mineralogy of hydrated Portland cement systems[J]. Cement and Concrete Research, 2010, 40(7): 1009-1022. [32] MATSCHEI T, LOTHENBACH B, GLASSER F P. The AFm phase in Portland cement[J]. Cement and Concrete Research, 2007, 37(2): 118-130. [33] SAILLIO M, BAROGHEL-BOUNY V, BARBERON F. Chloride binding in sound and carbonated cementitious materials with various types of binder[J]. Construction and Building Materials, 2014, 68: 82-91. [34] LI S C, JIN Z Q, YU Y. Chloride binding by calcined layered double hydroxides and alumina-rich cementitious materials in mortar mixed with seawater and sea sand[J]. Construction and Building Materials, 2021, 293: 123493. [35] ZHU Q, JIANG L H, CHEN Y, et al. Effect of chloride salt type on chloride binding behavior of concrete[J]. Construction and Building Materials, 2012, 37: 512-517. [36] SONG Z J, JIANG L H, LIU J Z, et al. Influence of cation type on diffusion behavior of chloride ions in concrete[J]. Construction and Building Materials, 2015, 99: 150-158. [37] ARYA C, BUENFELD N R, NEWMAN J B. Factors influencing chloride-binding in concrete[J]. Cement and Concrete Research, 1990, 20(2): 291-300. [38] DE WEERDT K, COLOMBO A, COPPOLA L, et al. Impact of the associated cation on chloride binding of Portland cement paste[J]. Cement and Concrete Research, 2015, 68: 196-202. [39] CHU H Q, PAN C L, GUO M Z, et al. Influence of cation types on the stability of bound chloride ions in cement mortar simultaneously under electric field and SO2-4 attack[J]. Construction and Building Materials, 2020, 245: 118402. [40] JIANG L X, WANG J M, YANG M N, et al. Effect of Ca2+ and Na+ on the curing performance of chloride ions in cement under carbonization[J]. Case Studies in Construction Materials, 2020, 13: e00430. [41] BREW D R M, GLASSER F P. Synthesis and characterisation of magnesium silicate hydrate gels[J]. Cement and Concrete Research, 2005, 35(1): 85-98. [42] POURSAEE A, LAURENT A, HANSSON C M. Corrosion of steel bars in OPC mortar exposed to NaCl, MgCl2 and CaCl2: macro- and micro-cell corrosion perspective[J]. Cement and Concrete Research, 2010, 40(3): 426-430. [43] CHENG S K, SHUI Z H, SUN T, et al. Effects of sulfate and magnesium ion on the chloride transportation behavior and binding capacity of Portland cement mortar[J]. Construction and Building Materials, 2019, 204: 265-275. [44] LABBEZ C, NONAT A, POCHARD I, et al. Experimental and theoretical evidence of overcharging of calcium silicate hydrate[J]. Journal of Colloid and Interface Science, 2007, 309(2): 303-307. [45] 李庆玲,史才军,何富强,等.水泥基材料中自由氯离子浓缩的影响因素[J].硅酸盐学报,2013,41(3):320-327. LI Q L, SHI C J, HE F Q, et al. Factors influencing free chloride ion condensation in cement-based materials[J]. Journal of the Chinese Ceramic Society, 2013, 41(3): 320-327 (in Chinese). [46] BEAUDOIN J J, RAMACHANDRAN V S, FELDMAN R F. Interaction of chloride and C-S-H[J]. Cement and Concrete Research, 1990, 20(6): 875-883. [47] VIALLIS H, FAUCON P, PETIT J C, et al. Interaction between salts (NaCl, CsCl) and calcium silicate hydrates (C-S-H)[J]. The Journal of Physical Chemistry B, 1999, 103(25): 5212-5219. [48] YOON S, HA J, CHAE S R, et al. X-ray spectromicroscopic study of interactions between NaCl and calcium silicate hydrates[J]. Magazine of Concrete Research, 2014, 66(3): 141-149. [49] ZHOU Y, HOU D S, JIANG J Y, et al. Experimental and molecular dynamics studies on the transport and adsorption of chloride ions in the nano-pores of calcium silicate phase: the influence of calcium to silicate ratios[J]. Microporous and Mesoporous Materials, 2018, 255: 23-35. [50] TANG Y J, SCHOLLBACH K, BROUWERS H J H, et al. Effects of soluble magnesium on the structure of calcium silicate hydrate[J]. Construction and Building Materials, 2021, 302: 124402. [51] 岳青滢,丁 宁,王石付,等.阳离子类型对混凝土固化氯离子能力的影响机理[J].混凝土,2014(1):12-16+20. YUE Q Y, DING N, WANG S F, et al. Effect of cationic types on concrete resistance to chloride ingress[J]. Concrete, 2014(1): 12-16+20 (in Chinese). [52] LOTHENBACH B, NIED D, L'HÔPITAL E, et al. Magnesium and calcium silicate hydrates[J]. Cement and Concrete Research, 2015, 77: 60-68. [53] 张晓佳,张高展,孙道胜,等.硫酸盐侵蚀溶液pH值对硅酸盐水泥浆体C-(A)-S-H凝胶结构的影响[J].复合材料学报,2019,36(2):441-449. ZHANG X J, ZHANG G Z, SUN D S, et al. Effect of pH-value of Na2SO4 solution on the structure of C-(A)-S-H gels in Portland cement pastes[J]. Acta Materiae Compositae Sinica, 2019, 36(2): 441-449 (in Chinese). [54] HANSSON C M, FRØLUND T, MARKUSSEN J B. The effect of chloride cation type on the corrosion of steel in concrete by chloride salts[J]. Cement and Concrete Research, 1985, 15(1): 65-73. [55] REVERTEGAT E, RICHET C, GEGOUT P. Effect of pH on the durability of cement pastes[J]. Cement and Concrete Research, 1992, 22(2/3): 259-272. [56] CAO H T, BUCEA L, RAY A, et al. The effect of cement composition and pH of environment on sulfate resistance of Portland cements and blended cements[J]. Cement and Concrete Composites, 1997, 19(2): 161-171. [57] 肖 佳,郭明磊,王大富,等.基于不同阳离子条件下硅酸盐水泥氯离子固化性能研究[J].硅酸盐通报,2016,35(9):2956-2961. XIAO J, GUO M L, WANG D F, et al. Chloride binding capacity of Portland cement under the condition of different cations[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(9): 2956-2961 (in Chinese). [58] REDDY B, GLASS G K, LIM P J, et al. On the corrosion risk presented by chloride bound in concrete[J]. Cement and Concrete Composites, 2002, 24(1): 1-5. [59] PAGE C L, VENNESLAND Ø. Pore solution composition and chloride binding capacity of silica-fume cement pastes[J]. Matériaux et Construction, 1983, 16(1): 19-25. [60] GLASS G K, REDDY B, BUENFELD N R. The participation of bound chloride in passive film breakdown on steel in concrete[J]. Corrosion Science, 2000, 42(11): 2013-2021. [61] LOTHENBACH B, BARY B, LE BESCOP P, et al. Sulfate ingress in Portland cement[J]. Cement and Concrete Research, 2010, 40(8): 1211-1225. [62] IRASSAR E F, BONAVETTI V L, GONZALEZ M. Microstructural study of sulfate attack on ordinary and limestone Portland cements at ambient temperature[J]. Cement and Concrete Research, 2003, 33(1): 31-41. [63] LIU K W, MO L W, DENG M, et al. Deterioration mechanism of Portland cement paste subjected to sodium sulfate attack[J]. Advances in Cement Research, 2015, 27(8): 477-486. [64] DU J M, TANG Z Y, LI G, et al. Key inhibitory mechanism of external chloride ions on concrete sulfate attack[J]. Construction and Building Materials, 2019, 225: 611-619. [65] WU J, WEI J X, HUANG H L, et al. Effect of multiple ions on the degradation in concrete subjected to sulfate attack[J]. Construction and Building Materials, 2020, 259: 119846. [66] GENG J, EASTERBROOK D, LI L Y, et al. The stability of bound chlorides in cement paste with sulfate attack[J]. Cement and Concrete Research, 2015, 68: 211-222. [67] MAES M, DE BELIE N. Resistance of concrete and mortar against combined attack of chloride and sodium sulphate[J]. Cement and Concrete Composites, 2014, 53: 59-72. [68] XU Y. The influence of sulphates on chloride binding and pore solution chemistry[J]. Cement and Concrete Research, 1997, 27(12): 1841-1850. [69] CHEN Y J, GAO J M, TANG L P, et al. Resistance of concrete against combined attack of chloride and sulfate under drying-wetting cycles[J]. Construction and Building Materials, 2016, 106: 650-658. [70] LUO R, CAI Y B, WANG C Y, et al. Study of chloride binding and diffusion in GGBS concrete[J]. Cement and Concrete Research, 2003, 33(1): 1-7. [71] YONEZAWA T. The mechanism of fixing Cl- by cement hydrates resulting in the transformation of NaCl to NaOH[C]//International Conference on Alkali-Aggregate Reaction, Tokyo, 1989. [72] PAGE C L, SHORT N R, TARRAS A E. Diffusion of chloride ions in hardened cement pastes[J]. Cement and Concrete Research, 1981, 11(3): 395-406. [73] GOLLOP R S, TAYLOR H F W. Microstructural and microanalytical studies of sulfate attack. I. Ordinary Portland cement paste[J]. Cement and Concrete Research, 1992, 22(6): 1027-1038. [74] BONEN D, COHEN M D. Magnesium sulfate attack on Portland cement paste. II. Chemical and mineralogical analyses[J]. Cement and Concrete Research, 1992, 22(4): 707-718. [75] AL-AMOUDI O S B, MASLEHUDDIN M, ABDUL-AL Y A B. Role of chloride ions on expansion and strength reduction in plain and blended cements in sulfate environments[J]. Construction and Building Materials, 1995, 9(1): 25-33. [76] LIU P, CHEN Y, YU Z W, et al. Research on sulfate attack mechanism of cement concrete based on chemical thermodynamics[J]. Advances in Materials Science and Engineering, 2020, 2020: 6916039. [77] LIU X, FENG P, LI W, et al. Effects of pH on the nano/micro structure of calcium silicate hydrate (C-S-H) under sulfate attack[J]. Cement and Concrete Research, 2021, 140: 106306. [78] MATSUYAMA H, YOUNG J F. Effects of pH on precipitation of quasi-crystalline calcium silicate hydrate in aqueous solution[J]. Advances in Cement Research, 2000, 12(1): 29-33. [79] BACH T T H, CHABAS E, POCHARD I, et al. Retention of alkali ions by hydrated low-pH cements: mechanism and Na+/K+ selectivity[J]. Cement and Concrete Research, 2013, 51: 14-21. [80] WANG Y, NANUKUTTAN S, BAI Y, et al. Influence of combined carbonation and chloride ingress regimes on rate of ingress and redistribution of chlorides in concretes[J]. Construction and Building Materials, 2017, 140: 173-183. [81] LEE M K, SANG H J, OH B H. Effects of carbonation on chloride penetration in concrete[J]. ACI Materials Journal, 2013, 110(5): 559-566. [82] GENG J, EASTERBROOK D, LIU Q F, et al. Effect of carbonation on release of bound chlorides in chloride-contaminated concrete[J]. Magazine of Concrete Research, 2016, 68(7): 353-363. [83] LIU J, QIU Q W, CHEN X C, et al. Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete[J]. Cement and Concrete Research, 2017, 95: 217-225. [84] 许 晨,王传坤,金伟良.混凝土中氯离子侵蚀与碳化的相互影响[J].建筑材料学报,2011,14(3):376-380. XU C, WANG C K, JIN W L. Interaction effect of chloride attack and carbonization in concrete[J]. Journal of Building Materials, 2011, 14(3): 376-380 (in Chinese). [85] 牛荻涛,孙丛涛.混凝土碳化与氯离子侵蚀共同作用研究[J].硅酸盐学报,2013,41(8):1094-1099. NIU D T, SUN C T. Study on interaction of concrete carbonation and chloride corrosion[J]. Journal of the Chinese Ceramic Society, 2013, 41(8): 1094-1099 (in Chinese). [86] 龚傲龙,郭万里,孙 朴,等.碳化作用下固化氯离子失稳特性研究[J].混凝土与水泥制品,2012(8):5-8. GONG A L, GUO W L, SUN P, et al. Study on instability characteristic of curing chloride ion under carbonization[J]. China Concrete and Cement Products, 2012(8): 5-8 (in Chinese). [87] CHANG H L. Chloride binding capacity of pastes influenced by carbonation under three conditions[J]. Cement and Concrete Composites, 2017, 84: 1-9. [88] SUN M, SUN C T, ZHANG P, et al. Influence of carbonation on chloride binding of mortars made with simulated marine sand[J]. Construction and Building Materials, 2021, 303: 124455. [89] KOBAYASHI K, SUZUKI K, UNO Y. Carbonation of concrete structures and decomposition of C-S-H[J]. Cement and Concrete Research, 1994, 24(1): 55-61. [90] GONI S, GUERRERO A. Accelerated carbonation of Friedel's salt in calcium aluminate cement paste[J]. Cement and Concrete Research, 2003, 33(1): 21-26. [91] 翁智财,余红发,孙 伟,等.水灰比与水泥用量对混凝土Cl-结合能力的影响[J].武汉理工大学学报,2006,28(3):47-50. WENG Z C, YU H F, SUN W, et al. Influence of water-cement ratio and cement content on chloride binding capacity of concrete[J]. Journal of Wuhan University of Technology, 2006, 28(3): 47-50 (in Chinese). [92] SURYAVANSHI A K, SCANTLEBURY J D, LYON S B. Corrosion of reinforcement steel embedded in high water-cement ratio concrete contaminated with chloride[J]. Cement and Concrete Composites, 1998, 20(4): 263-281. [93] YANG Z Q, GAO Y, MU S, et al. Improving the chloride binding capacity of cement paste by adding nano-Al2O3[J]. Construction and Building Materials, 2019, 195: 415-422. [94] 刘俊龙,余红发,孙 伟,等.混凝土氯离子结合能力的影响因素规律性研究[J].硅酸盐通报,2011,30(1):172-176. LIU J L, YU H F, SUN W, et al. Research on influencing factors of chloride ion binding capability of concrete[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(1): 172-176 (in Chinese). [95] 耿 健,丁庆军,孙家瑛,等.3种不同类型水泥固化氯离子的特点[J].水泥,2009(6):20-23. GENG J, DING Q J, SUN J Y, et al. Binding chloride ion abilities of three different types of cement[J]. Cement, 2009(6): 20-23 (in Chinese). [96] DOUSTI A, BEAUDOIN J J, SHEKARCHI M. Chloride binding in hydrated MK, SF and natural zeolite-lime mixtures[J]. Construction and Building Materials, 2017, 154: 1035-1047. [97] PANESAR D K, CHIDIAC S E. Effect of cold temperature on the chloride-binding capacity of cement[J]. Journal of Cold Regions Engineering, 2011, 25(4): 133-144. [98] OGIRIGBO O R, BLACK L. Chloride binding and diffusion in slag blends: influence of slag composition and temperature[J]. Construction and Building Materials, 2017, 149: 816-825. [99] GUERRERO A, GOÑI S, ALLEGRO V R. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: synergy of chloride and sulphate ions[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 903-908. [100] DHIR R K, EL-MOHR M A K, DYER T D. Developing chloride resisting concrete using PFA[J]. Cement and Concrete Research, 1997, 27(11): 1633-1639. [101] ARYA C, XU Y. Effect of cement type on chloride binding and corrosion of steel in concrete[J]. Cement and Concrete Research, 1995, 25(4): 893-902. [102] RASHEEDUZZAFAR, HUSSAIN S E, AL-GAHTANI A S. Pore solution composition and reinforcement corrosion characteristics of microsilica blended cement concrete[J]. Cement and Concrete Research, 1991, 21(6): 1035-1048. [103] DOUSTI A, SHEKARCHI M, ALIZADEH R, et al. Binding of externally supplied chlorides in micro silica concrete under field exposure conditions[J]. Cement and Concrete Composites, 2011, 33(10): 1071-1079. [104] THOMAS M D A, HOOTON R D, SCOTT A, et al. The effect of supplementary cementitious materials on chloride binding in hardened cement paste[J]. Cement and Concrete Research, 2012, 42(1): 1-7. [105] 李 东,朱月圆,耿 健,等.矿物掺合料和CLDH对水泥基材料氯离子固化性能研究[J].西安建筑科技大学学报(自然科学版),2019,51(3):344-349. LI D, ZHU Y Y, GENG J, et al. A study on curing charateristics of chloride ions binding in cement based materials with mineral admixture and CLDH[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2019, 51(3): 344-349 (in Chinese). [106] SHI Z G, GEIKER M R, DE WEERDT K, et al. Role of calcium on chloride binding in hydrated Portland cement-metakaolin-limestone blends[J]. Cement and Concrete Research, 2017, 95: 205-216. |
[1] | 张璐, 毛倩瑾, 伍文文, 李润丰, 韩磊, 王子明, 崔素萍. 吸水性微胶囊界面修饰提高水泥基材料抗渗性研究[J]. 硅酸盐通报, 2022, 41(8): 2663-2671. |
[2] | 韦建刚, 陈荣, 黄伟, 陈镇东, 陈宝春, 陈培标, 朱卫东. 静水压力下超高性能混凝土的抗氯离子渗透性能[J]. 硅酸盐通报, 2022, 41(8): 2706-2715. |
[3] | 祁帅, 田青, 张苗, 屈孟娇, 姚田帅, 王成. 水泥基材料成核剂研究进展[J]. 硅酸盐通报, 2022, 41(7): 2223-2234. |
[4] | 李润丰, 刘艳军, 涂玉波, 王林俊, 温晓庆, 任磊. 石墨烯增强复合相变储能材料的热学性能研究[J]. 硅酸盐通报, 2022, 41(7): 2542-2548. |
[5] | 黄维峰, 廖宜顺, 左义兵. 无水硫铝酸钙-石膏-石灰石水化体系的热力学模拟与验证[J]. 硅酸盐通报, 2022, 41(6): 1861-1868. |
[6] | 魏凯伦, 赵卫全, 樊恒辉. 基于响应面法的硅溶胶注浆材料配比优化研究[J]. 硅酸盐通报, 2022, 41(6): 2015-2023. |
[7] | 李玮, 周昌荣, 黎清宁, 李蕊, 侯凌浩, 孟天笑. Fe2O3原料的预处理对0.7BiFeO3-0.3BaTiO3陶瓷绝缘性与电性能的影响[J]. 硅酸盐通报, 2022, 41(6): 2126-2133. |
[8] | 何晓雁, 张天晓, 王辰昊, 武皓杰. 纤维水泥基材料抗冻性与孔结构关系的变化规律[J]. 硅酸盐通报, 2022, 41(5): 1529-1538. |
[9] | 周明凯, 林方亮, 陈立顺, 王怀德, 陈潇. SiO2含量对钛矿渣微晶玻璃晶化行为的影响[J]. 硅酸盐通报, 2022, 41(4): 1133-1140. |
[10] | 万洋, 余剑英, 何鹏, 曾尚恒. 基于微波加热的热膨胀微球/石蜡/石墨自修复功能材料的制备及其在砂浆中的应用[J]. 硅酸盐通报, 2022, 41(3): 757-765. |
[11] | 秦昭巧, 陈新杰, 储洪强, 张海生, 张迎忠, 姚乃嘉, 蒋林华. 镀镍碳纤维水泥基材料的电热性能研究[J]. 硅酸盐通报, 2022, 41(3): 802-809. |
[12] | 易昕政, 骆睿栋, 高游, 于海浩, 铁宁, 姚梦晗. 固化废弃软黏土的强度特性及水稳定性研究[J]. 硅酸盐通报, 2022, 41(3): 976-984. |
[13] | 周治, 王艺颖, 周华将, 雷丽勤, 王金秀, 陈渝. 0.06BiYbO3-0.94Pb(Zr0.48Ti0.52)O3三元系压电陶瓷的氧化物掺杂改性研究[J]. 硅酸盐通报, 2022, 41(3): 1020-1030. |
[14] | 杨智敏, 曾国鹏, 郭寅川, 肖葳, 毛松纯, 牟戈. 离析对湿热地区沥青混合料长期水稳定性的影响[J]. 硅酸盐通报, 2022, 41(3): 1094-1101. |
[15] | 曾昊, 谭幸淼, 梁超锋. 花岗岩废砂粉对水泥基材料性能影响的研究进展[J]. 硅酸盐通报, 2022, 41(2): 390-400. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||