硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (8): 2589-2603.
• 特邀综述 • 下一篇
万瑞1,2, 杨利青1, 霍伟荣3, 马园1,2, 李生武1,2, 郭晨1,2, 王鹏飞1,2
收稿日期:
2022-04-18
修回日期:
2022-06-16
出版日期:
2022-08-15
发布日期:
2022-08-30
通讯作者:
王鹏飞,博士,研究员。E-mail:pfwang@opt.ac.cn
作者简介:
万 瑞(1994—),男,博士研究生。主要从事特种光电玻璃研究。E-mail:wanrui17@mails.ucas.ac.cn
基金资助:
WAN Rui1,2, YANG Liqing1, HUO Weirong3, MA Yuan1,2, LI Shengwu1,2, GUO Chen1,2, WANG Pengfei1,2
Received:
2022-04-18
Revised:
2022-06-16
Online:
2022-08-15
Published:
2022-08-30
摘要: 近/中红外激光和超连续光源在红外光电对抗、生物医疗、遥测感知和激光探测及测距(LIDAR)等领域具有十分重要的应用价值。近年来,基于软玻璃光纤来产生和传输高亮度近/中红外(特别是2~5 μm)激光方面的研究取得了显著进展。在中红外软玻璃基质中,具有相对较低声子能的碲酸盐玻璃对于设计近红外和中红外激光器和放大器、高功率中红外激光传输和传感应用无源光纤具有特别的吸引力。本文重点总结了低损耗碲酸盐玻璃的关键制备技术,并综述了碲酸盐玻璃及光纤在稀土掺杂中红外发光方面的研究进展,最后对碲酸盐玻璃及光纤应用存在的问题和发展趋势进行了总结和展望。
中图分类号:
万瑞, 杨利青, 霍伟荣, 马园, 李生武, 郭晨, 王鹏飞. 中红外碲酸盐玻璃及光纤研究进展[J]. 硅酸盐通报, 2022, 41(8): 2589-2603.
WAN Rui, YANG Liqing, HUO Weirong, MA Yuan, LI Shengwu, GUO Chen, WANG Pengfei. Research Progress of Mid-Infrared Tellurite Glass and Optical Fibers[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(8): 2589-2603.
[1] HWA L G, CHANG Y R, CHAO W C. Infrared spectra of lanthanum gallogermanate glasses[J]. Materials Chemistry and Physics, 2004, 85(1): 158-162. [2] CANALIAS C, PASISKEVICIUS V. Mirrorless optical parametric oscillator[J]. Nature Photonics, 2007, 1(8): 459-462. [3] BARANOV A N, IMENKOV A N, SHERSTNEV V V, et al. 2.7-3.9 μm InAsSb(P)/InAsSbP low threshold diode lasers[J]. Applied Physics Letters, 1994, 64(19): 2480-2482. [4] 郭玉彬,霍佳雨.光纤激光器及其应用[M].北京:科学出版社,2008:1-17. GUO Y B, HUO J Y. Fiber lasers and their applications[M]. Beijing: Science Press, 2008: 1-17 (in Chinese). [5] 聂秋华.光纤激光器和放大器技术[M].北京:电子工业出版社,1997:23-24. NIE Q H. Fiber laser and amplifier technology[M]. Beijing: Electronic Industry Press, 1997: 23-24 (in Chinese). [6] 王伟超.掺稀土多组分锗酸盐和碲酸盐玻璃光纤2.0~3.0 μm中红外高效发光[D].广州:华南理工大学,2017. WANG W C. Efficient mid-infrared luminescence at 2.0~3.0 μm from rare-earth-doped multi-component germanate and tellurite glass fibers[D]. Guangzhou: South China University of Technology, 2017 (in Chinese). [7] ZHANG L F, GUAN F, ZHANG L, et al. Next generation mid-infrared fiber: fluoroindate glass fiber[J]. Optical Materials Express, 2022, 12(4): 1683. [8] WANG J S, VOGEL E M, SNITZER E. Tellurite glass: a new candidate for fiber devices[J]. Optical Materials, 1994, 3(3): 187-203. [9] MORI A, OHISHI Y, SUDO S. Erbium-doped tellurite glass fibre laser and amplifier[J]. Electronics Letters, 1997, 33(10): 863. [10] AITKEN B G, ELLISON A J G. Tellurite glasses and optical components: US6194334[P]. 2001-02-27. [11] SHEN S, NAFTALY M, JHA A, et al. Thulium-doped tellurite glasses for S-band amplification[C]//OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171). March 17-22, 2001, Anaheim, CA, USA. IEEE, 2001: TuQ6. [12] ZHAO Z P, YAO C F, LI Z R, et al. 8.08 W holmium doped fluorotellurite fiber laser at 2 067 nm[J]. Laser Physics Letters, 2019, 16(11): 115101. [13] WANG W C, YUAN J, LI L X, et al. Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications[J]. Optical Materials Express, 2015, 5(12): 2964. [14] TIAN Y, LI B P, WANG J R, et al. The mid-infrared emission properties and energy transfer of Tm3+/Er3+ co-doped tellurite glass pumped by 808/980 nm laser diodes[J]. Journal of Luminescence, 2019, 214: 116586. [15] FENG X, TANABE S, HANADA T. Hydroxyl groups in erbium-doped germanotellurite glasses[J]. Journal of Non-Crystalline Solids, 2001, 281(1/2/3): 48-54. [16] HUMBACH O, FABIAN H, GRZESIK U, et al. Analysis of OH absorption bands in synthetic silica[J]. Journal of Non-Crystalline Solids, 1996, 203: 19-26. [17] FRANCE P W, CARTER S F, WILLIAMS J R, et al. OH-absorption in fluoride glass infra-red fibres[J]. Electronics Letters, 1984, 20(14): 607. [18] LI K R, ZHANG L L, YUAN Y, et al. Influence of different dehydration gases on physical and optical properties of tellurite and tellurium-tungstate glasses[J]. Applied Physics B, 2016, 122(4): 1-7. [19] 王伟超,袁 健,陈东丹,等.掺稀土光子玻璃近中红外发光与激光[J].中国科学:技术科学,2015,45(8):809-824. WANG W C, YUAN J, CHEN D D, et al. Recent advances in rare-earth-doped photonic glasses for near- and mid-infrared lasers[J]. Scientia Sinica (Technologica), 2015, 45(8): 809-824 (in Chinese). [20] CHURBANOV M F, MOISEEV A N, CHILYASOV A V, et al. Production of high-purity TeO2-ZnO and TeO2-WO3 glasses with the reduced content of OH- groups[J]. Journal of Optoelectronics and Advanced Materials, 2007, 9(10): 3229-3234. [21] KRÄMER F W. Solubility of gases in glass melts[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1996, 100(9): 1512-1514. [22] WANG W C, ZHOU B, XU S H, et al. Recent advances in soft optical glass fiber and fiber lasers[J]. Progress in Materials Science, 2019, 101: 90-171. [23] MASSERA J, HALDEMAN A, JACKSON J, et al. Processing of tellurite-based glass with low OH content[J]. Journal of the American Ceramic Society, 2011, 94(1): 130-136. [24] EBENDORFF-HEIDEPRIEM H, KUAN K, OERMANN M R, et al. Extruded tellurite glass and fibers with low OH content for mid-infrared applications[J]. Optical Materials Express, 2012, 2(4): 432. [25] YU C L, DAI S X, ZHOU G, et al. Influence of OH- on the spectral properties in Er3+-doped tellurite glass[J]. Science in China Series E-Engineering & Materials Science, 2005, 35(9): 924-933. [26] MORI A. Tellurite-based fibers and their applications to optical communication networks[J]. Journal of the Ceramic Society of Japan, 2008, 116(1358): 1040-1051. [27] MORI A, KOBAYASHI K, YAMADA M, et al. Low noise broadband tellurite-based Er3+-doped fibre amplifiers[J]. Electronics Letters, 1998, 34(9): 887. [28] 许顺磊,柳忠琪,常意川,等.高纯金属碲及其氧化物的制备方法概述[J].船电技术,2019,39(5):46-50. XU S L, LIU Z Q, CHANG Y C, et al. Summary of the preparation method of high purity to tellurium and their oxides[J]. Marine Electric & Electronic Engineering, 2019, 39(5): 46-50 (in Chinese). [29] DOROFEEV V V, MOISEEV A N, CHURBANOV M F, et al. High-purity TeO2-WO3-(La2O3, Bi2O3) glasses for fiber-optics[J]. Optical Materials, 2011, 33(12): 1911-1915. [30] MOISEEV A N, DOROFEEV V V, CHILYASOV A V, et al. Production and properties of high purity TeO2-ZnO-Na2O-Bi2O3 and TeO2-WO3-La2O3-MoO3 glasses[J]. Optical Materials, 2011, 33(12): 1858-1861. [31] FENG X, SHI J D, SEGURA M, et al. Halo-tellurite glass fiber with low OH content for 2~5 μm mid-infrared nonlinear applications[J]. Optics Express, 2013, 21(16): 18949-18954. [32] SHI H X, FENG X, TAN F Z, et al. Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber[J]. Optical Materials Express, 2016, 6(12): 3967. [33] BOIVIN M, EL-AMRAOUI M, POLIQUIN S, et al. Advances in methods of purification and dispersion measurement applicable to tellurite-based glasses[J]. Optical Materials Express, 2016, 6(4): 1079. [34] O'DONNELL M D, MILLER C A, FURNISS D, et al. Fluorotellurite glasses with improved mid-infrared transmission[J]. Journal of Non-Crystalline Solids, 2003, 331(1/2/3): 48-57. [35] RHONEHOUSE D L, ZONG J, NGUYEN D, et al. Low loss, wide transparency, robust tellurite glass fibers for mid-IR (2~5 μm) applications[C]//SPIE Security+Defence. Proc SPIE 8898, Technologies for Optical Countermeasures X; and High-Power Lasers 2013: Technology and Systems, Dresden, Germany. 2013, 8898: 58-65. [36] JIA S J, YAO C F, ZHAO Z P, et al. Flat supercontinuum generation from 1 028~2 804 nm in an all-solid fluorotellurite fiber[J]. Laser Physics Letters, 2018, 15(11): 115104. [37] LIN A X, RYASNYANSKIY A, TOULOUSE J. Fabrication and characterization of a water-free mid-infrared fluorotellurite glass[J]. Optics Letters, 2011, 36(5): 740-742. [38] LEZAL D, PEDLIKOVA J, KOSTKA P, et al. Heavy metal oxide glasses: preparation and physical properties[J]. Journal of Non-Crystalline Solids, 2001, 284(1/2/3): 288-295. [39] LIAO G H, CHEN Q P, XING J J, et al. Preparation and characterization of new fluorotellurite glasses for photonics application[J]. Journal of Non-Crystalline Solids, 2009, 355(7): 447-452. [40] YATSENKO Y P, NAZARYANTS V O, KOSOLAPOV A F, et al. Dispersion and guidance characteristics of microstructured 68TeO2-22WO3-8La2O3-2Bi2O3 glass fibres for supercontinuum generation[J]. Quantum Electronics, 2010, 40(6): 513-518. [41] JOSHI P, RICHARDS B, JHA A. Reduction of OH- ions in tellurite glasses using chlorine and oxygen gases[J]. Journal of Materials Research, 2013, 28(23): 3226-3233. [42] YUE J, XUE T F, HUANG F F, et al. Thermally stable mid-infrared fluorotellurite glass with low OH content[J]. Journal of Non-Crystalline Solids, 2015, 408: 1-6. [43] PICOT-CLEMENTE J, STRUTYNSKI C, AMRANI F, et al. Enhanced supercontinuum generation in tapered tellurite suspended core fiber[J]. Optics Communications, 2015, 354: 374-379. [44] YAO C F, JIA Z X, LI Z R, et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. Optica, 2018, 5(10): 1264. [45] KARABULUT M, MARASINGHE G K, CLICK C A, et al. XAFS investigation of platinum impurities in phosphate glasses[J]. Journal of the American Ceramic Society, 2002, 85(5): 1093-1099. [46] KHONTHON S, MORIMOTO S, ARAI Y, et al. Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics[J]. Journal of the Ceramic Society of Japan, 2007, 115(1340): 259-263. [47] POLOSAN S. Structure and low field magnetic properties in phosphate-tellurite glasses[J]. Journal of Non-Crystalline Solids, 2019, 524: 119651. [48] WANG P F, NG A K L, DOWLER A, et al. Development of low-loss lead-germanate glass for mid-infrared fiber optics: Ⅱ. preform extrusion and fiber fabrication[J]. Journal of the American Ceramic Society, 2021, 104(2): 833-850. [49] DÉSÉVÉDAVY F, STRUTYNSKI C, LEMIÈRE A, et al. Review of tellurite glasses purification issues for mid-IR optical fiber applications[J]. Journal of the American Ceramic Society, 2020, 103(8): 4017-4034. [50] WANG P F, BEI J F, AHMED N, et al. Development of low-loss lead-germanate glass for mid-infrared fiber optics: I. glass preparation optimization[J]. Journal of the American Ceramic Society, 2021, 104(2): 860-876. [51] DINERMAN B J, MOULTON P F. 3-μm cw laser operations in erbium-doped YSGG, GGG, and YAG[J]. Optics Letters, 1994, 19(15): 1143-1145. [52] JENSEN T, CHAI B H T, DIENING A, et al. Investigation of diode-pumped 2.8-μm Er∶LIYF4 lasers with various doping levels[J]. Optics Letters, 1996, 21(8): 585. [53] TANIGUCHI A, KUWAYAMA T, SHIRAKAWA A, et al. 1 212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser[J]. Applied Physics Letters, 2002, 81(20): 3723-3725. [54] 袁 健.2.0 μm波段稀土掺杂碲酸盐玻璃光纤及其光谱和激光实验研究[D].广州:华南理工大学,2015. YUAN J. Rare earth doped tellurite glass fibers and their spectroscopic properties for the lasers operating at 2.0 μm region and the laser experimental research[D]. Guangzhou: South China University of Technology, 2015 (in Chinese). [55] WANG C Z, TIAN Y, GAO X Y, et al. Mid-infrared fluorescence properties, structure and energy transfer around 2 μm in Tm3+/Ho3+ co-doped tellurite glass[J]. Journal of Luminescence, 2018, 194: 791-796. [56] YANG X L, WANG W C, ZHANG Q Y. BaF2 modified Cr3+/Ho3+ co-doped germanate glass for efficient 2.0 μm fiber lasers[J]. Journal of Non-Crystalline Solids, 2018, 482: 147-153. [57] RICHARDS B D O, TSANG Y H, BINKS D J, et al. Efficient 1.9 μm Tm3+/Yb3+-doped tellurite fibre laser[C]//SPIE Remote Sensing. Proc SPIE 6750, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing III, Florence, Italy. 2007, 6750: 41-49. [58] TSANG Y, RICHARDS B, BINKS D, et al. Tm3+/Ho3+ codoped tellurite fiber laser[J]. Optics Letters, 2008, 33(11): 1282-1284. [59] WANG S B, YAO C F, JIA Z X, et al. 1 887 nm lasing in Tm3+-doped TeO2-BaF2-Y2O3 glass microstructured fibers[J]. Optical Materials, 2017, 66: 640-643. [60] LI K F, ZHANG G, WANG X, et al. Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser[J]. Optics Express, 2012, 20(9): 10115. [61] LI K F, ZHANG G, HU L L. Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber[J]. Optics Letters, 2010, 35(24): 4136-4138. [62] GOMES L, LOUSTEAU J, MILANESE D, et al. Energy transfer and energy level decay processes in Tm3+-doped tellurite glass[J]. Journal of Applied Physics, 2012, 111(6): 063105. [63] MURAVYEV S V, ANASHKINA E A, ANDRIANOV A V, et al. Dual-band Tm3+-doped tellurite fiber amplifier and laser at 1.9 μm and 2.3 μm[J]. Scientific Reports, 2018, 8: 16164. [64] LI D H, XU W B, KUAN P W, et al. Spectroscopic and laser properties of Ho3+ doped lanthanum-tungsten-tellurite glass and fiber[J]. Ceramics International, 2016, 42(8): 10493-10497. [65] YAO C F, HE C F, JIA Z X, et al. Holmium-doped fluorotellurite microstructured fibers for 2.1 μm lasing[J]. Optics Letters, 2015, 40(20): 4695-4698. [66] RICHARDS B, TSANG Y, BINKS D, et al. ~2 μm Tm3+/Yb3+-doped tellurite fibre laser[J]. Journal of Materials Science: Materials in Electronics, 2009, 20(1): 317-320. [67] KUAN P W, LI K F, ZHANG L, et al. All-fiber passively Q-switched laser based on Tm3-doped tellurite fiber[J]. IEEE Photonics Technology Letters, 2015, 27(7): 689-692. [68] GAO S, KUAN P W, LIU X Q, et al. ~2 μm single-mode laser output in Tm3+-doped tellurium germanate double-cladding fiber[J]. IEEE Photonics Technology Letters, 2015, 27(16): 1702-1704. [69] LI L X, WANG W C, ZHANG C F, et al. 2.0 μm Nd3+/Ho3+-doped tungsten tellurite fiber laser[J]. Optical Materials Express, 2016, 6(9): 2904. [70] ZHOU D C, BAI X M, ZHOU H. Preparation of Ho3+/Tm3+ co-doped lanthanum tungsten germanium tellurite glass fiber and its laser performance for 2.0 μm[J]. Scientific Reports, 2017, 7: 44747. [71] DENKER B I, DOROFEEV V V, GALAGAN B I, et al. 2.3 μm laser action in Tm3+-doped tellurite glass fiber[J]. Laser Physics Letters, 2019, 16(1): 015101. [72] DENKER B I, DOROFEEV V V, GALAGAN B I, et al. 50 mW tellurite glass fiber laser at 2.3 microns[C]//2020 International Conference Laser Optics (ICLO). November 2-6, 2020, St. Petersburg, Russia. IEEE, 2020: 1. [73] DENKER B I, DOROFEEV V V, GALAGAN B I, et al. A 200 mW, 2.3 μm Tm3+-doped tellurite glass fiber laser[J]. Laser Physics Letters, 2020, 17(9): 095101. [74] OERMANN M R, EBENDORFF-HEIDEPRIEM H, LI Y H, et al. Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum-tellurite glass[J]. Optics Express, 2009, 17(18): 15578-15584. [75] GOMES L, OERMANN M, EBENDORFF-HEIDEPRIEM H, et al. Energy level decay and excited state absorption processes in erbium-doped tellurite glass[J]. Journal of Applied Physics, 2011, 110(8): 083111. [76] WANG R S, MENG X W, YIN F X, et al. Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications[J]. Optical Materials Express, 2013, 3(8): 1127. [77] XUE T F, LI Y, LIU Y Y, et al. High thermal stability and intense 2.71 μm emission in Er3+-doped fluorotellurite glass modified by GaF3[J]. Optical Materials, 2018, 75: 367-372. [78] GUO Y Y, TIAN Y, ZHANG L Y, et al. Erbium doped heavy metal oxide glasses for mid-infrared laser materials[J]. Journal of Non-Crystalline Solids, 2013, 377: 119-123. [79] ZHANG F F, ZHANG W J, YUAN J, et al. Enhanced 2.7 μm emission from Er3+ doped oxyfluoride tellurite glasses for a diode-pump mid-infrared laser[J]. AIP Advances, 2014, 4(4): 047101. [80] GUO Y Y, LI M, TIAN Y, et al. Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses[J]. Journal of Applied Physics, 2011, 110(1): 013512. [81] WANG C Z, TIAN Y, GAO X Y, et al. Investigation of broadband mid-infrared emission and quantitative analysis of Dy-Er energy transfer in tellurite glasses under different excitations[J]. Optics Express, 2017, 25(23): 29512. [82] ZHAN H, ZHANG A D, HE J L, et al. Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses[J]. Journal of Alloys and Compounds, 2014, 582: 742-746. [83] MA H P, TIAN Y, LIU Q H, et al. 2.75 μm spectroscopic properties and energy transfer mechanism in Er/Ho codoped fluorotellurite glasses[J]. Journal of Alloys and Compounds, 2018, 744: 502-506. [84] GOMES L, MILANESE D, LOUSTEAU J, et al. Energy level decay processes in Ho3+-doped tellurite glass relevant to the 3 μm transition[J]. Journal of Applied Physics, 2011, 109(10): 103110. [85] ZHANG J J, LU Y, CAI M Z, et al. Highly efficient 2.84 μm emission in Ho3+/Yb3+ co-doped tellurite-germanate glass for mid-infrared laser materials[J]. IEEE Photonics Technology Letters, 2017, 29(17): 1498-1501. [86] WAN R, WANG P F, LI S W, et al. 2.86 μm emission and fluorescence enhancement through controlled precipitation of ZnTe nanocrystals in DyF3 doped multicomponent tellurite oxyfluoride glass[J]. Journal of Non-Crystalline Solids, 2021, 564: 120842. [87] WANG C Z, TIAN Y, LI H H, et al. Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy3+/Tm3+ co-doped tellurite glass[J]. Infrared Physics & Technology, 2017, 85: 128-132. [88] ANASHKINA E A, DOROFEEV V V, MURAVYEV S V, et al. Possibilities of laser amplification and measurement of the field structure of ultrashort pulses in the range of 2.7~3 μm in tellurite glass fibres doped with erbium ions[J]. Quantum Electronics, 2018, 48(12): 1118-1127. [89] ANASHKINA E A, ANDRIANOV A V, DOROFEEV V V, et al. Two-color pump schemes for Er-doped tellurite fiber lasers and amplifiers at 2.7~2.8 μm[J]. Laser Physics Letters, 2019, 16(2): 025107. [90] ANASHKINA E A, DOROFEEV V V, KOLTASHEV V V, et al. Development of Er3+-doped high-purity tellurite glass fibers for gain-switched laser operation at 2.7 μm[J]. Optical Materials Express, 2017, 7(12): 4337. [91] MA Y Y, GUO Y Y, HUANG F F, et al. Spectroscopic properties in Er3+ doped zinc- and tungsten-modified tellurite glasses for 2.7 μm laser materials[J]. Journal of Luminescence, 2014, 147: 372-377. [92] 范小康,王 欣,李 夏,等.Er3+单掺与Er3+/Pr3+共掺碲酸盐玻璃的2.7 μm光谱性质及能量转移过程[J].光学学报,2014,34(1):171-177. FAN X K, WANG X, LI X, et al. 2.7 μm fluorescence and energy transfer process in Er3+-doped and Er3+/Pr3+co-doped tellurite glasses[J]. Acta Optica Sinica, 2014, 34(1): 171-177 (in Chinese). [93] CHEN F Z, XU S Q, WEI T, et al. Mid-infrared emission and Raman spectra analysis of Er3+-doped oxyfluorotellurite glasses[J]. Applied Optics, 2015, 54(11): 3345-3352. [94] CHEN F Z, WEI T, JING X F, et al. Investigation of mid-infrared emission characteristics and energy transfer dynamics in Er3+ doped oxyfluoride tellurite glass[J]. Scientific Reports, 2015, 5: 10676. [95] YIN D D, YANG F J, WU L B, et al. Enhanced 2.7 μm mid-infrared emission and energy transfer mechanism in Er3+/Nd3+ codoped tellurite glass[J]. Journal of Alloys and Compounds, 2015, 618: 666-672. [96] ANASHKINA E A, ANDRIANOV A V, DOROFEEV V V, et al. Development of infrared fiber lasers at 1 555 nm and at 2 800 nm based on Er-doped zinc-tellurite glass fiber[J]. Journal of Non-Crystalline Solids, 2019, 525: 119667. [97] LIU J L, XIAO Y B, HUANG S J, et al. The glass-forming region and 2.7 μm emission of Er3+-doped TeO2-Ta2O5-ZnO tellurite glass[J]. Journal of Non-Crystalline Solids, 2019, 522: 119564. [98] FU W B, ZHANG C M, HOU G N, et al. Enhanced fluorescence emission of 2.7 μm from high thermal stability Er3+/Bi3+ co-doped tellurite glasses for mid-infrared lasers[J]. Optik, 2019, 182: 308-313. [99] WANG W C, MAO L Y, LIU J L, et al. Glass-forming regions and enhanced 2.7 μm emission by Er3+ heavily doping in TeO2-Ga2O3-R2O (or MO) glasses[J]. Journal of the American Ceramic Society, 2020, 103(9): 4999-5012. [100] WAN R, WANG P F, LI S W, et al. Spectroscopic properties of ErF3 doped tellurite-gallium oxyfluoride glass for ~3 μm laser materials[J]. Journal of Applied Physics, 2021, 129(15): 153105. |
[1] | 张雄斌;贺辛亥;刘松涛. 稀土掺杂生物形态 SnO2多孔陶瓷材料的制备及气敏性研究[J]. 硅酸盐通报, 2016, 35(9): 3025-3029. |
[2] | 徐晓虹;陈霞;吴建锋;何德芝;刘溢;任潇. 稀土掺杂对ZnO材料结构及光催化性能的影响研究[J]. 硅酸盐通报, 2016, 35(10): 3096-3100. |
[3] | 许晓典;王衍行;祖成奎;周鹏. 特殊色散玻璃的研究进展[J]. 硅酸盐通报, 2016, 35(10): 3184-3190. |
[4] | 王学荣;杨魁胜;王晶晶. 稀土离子掺杂Ba0.65Zr0.35F2.70上转换纳米晶的制备与表征[J]. 硅酸盐通报, 2011, 30(6): 1278-1281. |
[5] | 李忠秀;徐铁峰;沈祥;戴世勋;王训四;聂秋华;章向华. Dy3+掺杂Ge-Ga-Sb-S-CsI硫卤玻璃的热学特性及析晶动力学研究[J]. 硅酸盐通报, 2010, 29(2): 458-463. |
[6] | 殷海荣;章春香;刘立营. 高Verdet常数Faraday玻璃磁光理论及其应用[J]. 硅酸盐通报, 2008, 27(4): 748-753. |
[7] | 陈国荣;S Baccaro;M Nikl;A Cecilia;杜永娟;汪山. Na2O-Gd2O3-P2O5闪烁玻璃的辐照损伤及热漂白性能[J]. 硅酸盐通报, 2002, 21(2): 3-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||