[1] KHANMOHAMMADI M, AMANI S, GARMARUDI A B, et al. Methanol-to-propylene process: perspective of the most important catalysts and their behavior[J]. Chinese Journal of Catalysis, 2016, 37(3): 325-339. [2] JIANG L X, LI C F, XU M, et al. Investigation on and industrial application of degrading of methanol feed in methanol to propylene process[J]. Chinese Journal of Chemical Engineering, 2018, 26(10): 2102-2111. [3] LI H Y, WANG Y Q, FAN C Y, et al. Facile synthesis of a superior MTP catalyst: hierarchical micro-meso-macroporous ZSM-5 zeolites[J]. Applied Catalysis A: General, 2018, 551: 34-48. [4] EBADZADEH E, KHADEMI M H, BEHESHTI M. A kinetic model for methanol-to-propylene process in the presence of co-feeding of C4-C5 olefin mixture over H-ZSM-5 catalyst[J]. Chemical Engineering Journal, 2021, 405: 126605. [5] FENG R, YAN X L, HU X Y, et al. Direct synthesis of b-axis oriented H-form ZSM-5 zeolites with an enhanced performance in the methanol to propylene reaction[J]. Microporous and Mesoporous Materials, 2020, 302: 110246. [6] HASHEMI F, TAGHIZADEH M, RAMI M D. Polyoxometalate modified SAPO-34: a highly stable and selective catalyst for methanol conversion to light olefins[J]. Microporous and Mesoporous Materials, 2020, 295: 109970. [7] XUE Y F, LI J F, WANG P F, et al. Regulating Al distribution of ZSM-5 by Sn incorporation for improving catalytic properties in methanol to olefins[J]. Applied Catalysis B: Environmental, 2021, 280: 119391. [8] 韩海波,王有和,付春峰,等.碱处理改性对Zn/HZSM-5分子筛催化剂性能的影响[J].硅酸盐通报,2018,37(2):456-461+495. HAN H B, WANG Y H, FU C F, et al. Effect of alkali treatment on the performance of Zn/HZSM-5 catalyst[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(2): 456-461+495 (in Chinese). [9] GOETZE J, MEIRER F, YARULINA I, et al. Insights into the activity and deactivation of the methanol-to-olefins process over different small-pore zeolites as studied with operando UV-vis spectroscopy[J]. ACS Catalysis, 2017, 7(6): 4033-4046. [10] LI L P, CHEN Y Y, XU S T, et al. Oriented control of Al locations in the framework of Al-Ge-ITQ-13 for catalyzing methanol conversion to propene[J]. Journal of Catalysis, 2016, 344: 242-251. [11] FENG R, YAN X L, HU X Y, et al. The effect of co-feeding ethanol on a methanol to propylene (MTP) reaction over a commercial MTP catalyst[J]. Applied Catalysis A: General, 2020, 592: 117429. [12] ZHAO Y, LIU J X, XIONG G, et al. Enhancing hydrothermal stability of nano-sized HZSM-5 zeolite by phosphorus modification for olefin catalytic cracking of full-range FCC gasoline[J]. Chinese Journal of Catalysis, 2017, 38(1): 138-145. [13] ZHOU J, TENG J W, REN L P, et al. Full-crystalline hierarchical monolithic ZSM-5 zeolites as superiorly active and long-lived practical catalysts in methanol-to-hydrocarbons reaction[J]. Journal of Catalysis, 2016, 340: 166-176. [14] 韩静宇,张 莉,王洪涛,等.MFI型金属硅酸盐合成、介孔改性与骨架原子脱除行为[J].硅酸盐通报,2017,36(9):2913-2922. HAN J Y, ZHANG L, WANG H T, et al. Synthesis, mesopore modification and framework atoms removal of diverse metallosilicates with MFI structure[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(9): 2913-2922 (in Chinese). [15] AN J H, WANG Y H, LU J M, et al. Acid-promoter-free ethylene methoxycarbonylation over Ru-clusters/ceria: the catalysis of interfacial lewis acid-base pair[J]. Journal of the American Chemical Society, 2018, 140(11): 4172-4181. [16] ALI M A, AL-BAGHLI N A, NISAR M, et al. Selective production of propylene from methanol over monolith-supported modified ZSM-5 catalysts[J]. Energy & Fuels, 2019, 33(2): 1458-1466. [17] 赵学斌.甲醇转化反应中提升丙烯选择性和寿命的研究[D].大连:大连理工大学,2018. ZHAO X B. Exploration to improve propene selectivity and reaction lifespan in methanol conversion reaction[D]. Dalian: Dalian University of Technology, 2018 (in Chinese). [18] ROSTAMIZADEH M, YARIPOUR F, HAZRATI H. Ni-doped high silica HZSM-5 zeolite (Si/Al=200) nanocatalyst for the selective production of olefins from methanol[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 1-10. [19] WANG S, WANG P F, QIN Z F, et al. Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins, viewed via a comparison between ZSM-5 and ZSM-11[J]. ACS Catalysis, 2018, 8(6): 5485-5505. [20] LI C G, VIDAL-MOYA A, MIGUEL P J, et al. Selective introduction of acid sites in different confined positions in ZSM-5 and its catalytic implications[J]. ACS Catalysis, 2018, 8(8): 7688-7697. [21] 严丽霞.甲醇制丙烯催化剂的结构调控与性能研究[D].杭州:浙江大学,2015. YAN L X. Studies on the structural modulation and catalytic performance of catalyst for methanol to propylene[D]. Hangzhou: Zhejiang University, 2015 (in Chinese). [22] HUANG F T, CAO J X, WANG L, et al. Enhanced catalytic behavior for methanol to lower olefins over SAPO-34 composited with ZrO2[J]. Chemical Engineering Journal, 2020, 380: 122626. [23] ZENG L Y, WANG Y Z, MOU J, et al. Promoted catalytic behavior over γ-Al2O3 composited with ZSM-5 for crude methanol conversion to dimethyl ether[J]. International Journal of Hydrogen Energy, 2020, 45(33): 16500-16508. [24] BAKARE I A, MURAZA O, YOSHIOKA M, et al. Conversion of methanol to olefins over Al-rich ZSM-5 modified with alkaline earth metal oxides[J]. Catalysis Science & Technology, 2016, 6(21): 7852-7859. [25] ZHANG H R, NING Z X, SHANG J P, et al. A durable and highly selective PbO/HZSM-5 catalyst for methanol to propylene (MTP) conversion[J]. Microporous and Mesoporous Materials, 2017, 248: 173-178. [26] JIANG F, WANG S S, LIU B, et al. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts[J]. ACS Catalysis, 2020, 10(19): 11493-11509. [27] MA Y Y, GAO W, ZHANG Z Y, et al. Regulating the surface of nanoceria and its applications in heterogeneous catalysis[J]. Surface Science Reports, 2018, 73(1): 1-36. [28] 焦东霞,王业红,张志鑫,等.氧化铈酸碱催化有机官能团化反应研究进展[J].陕西师范大学学报(自然科学版),2022,50(2):86-92+2. JIAO D X, WANG Y H, ZHANG Z X, et al. Research advances of cerium oxide acid-base catalyzed organic functionalization reaction[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2022, 50(2): 86-92+2 (in Chinese). [29] EPELDE E, GAYUBO A G, OLAZAR M, et al. Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene[J]. Chemical Engineering Journal, 2014, 251: 80-91. [30] XU S T, ZHI Y C, HAN J F, et al. Advances in catalysis for methanol-to-olefins conversion[J]. Advances in Catalysis, 2017, 61: 37-122. [31] WANG S, ZHANG L, ZHANG W Y, et al. Selective conversion of CO2 into propene and butene[J]. Chem, 2020, 6(12): 3344-3363. [32] MEI C S, WEN P Y, LIU Z C, et al. Selective production of propylene from methanol: mesoporosity development in high silica HZSM-5[J]. Journal of Catalysis, 2008, 258(1): 243-249. [33] SU L L, LIU L, ZHUANG J Q, et al. Creating mesopores in ZSM-5 zeolite by alkali treatment: a new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts[J]. Catalysis Letters, 2003, 91(3/4): 155-167. [34] HADI N, ALIZADEH R, NIAEI A. Selective production of propylene from methanol over nanosheets of metal-substituted MFI zeolites[J]. Journal of Industrial and Engineering Chemistry, 2017, 54: 82-97. [35] WANG Z C, JIANG Y J, LAFON O, et al. Brönsted acid sites based on penta-coordinated aluminum species[J]. Nature Communications, 2016, 7: 13820. [36] YARULINA I, DE WISPELAERE K, BAILLEUL S, et al. Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process[J]. Nature Chemistry, 2018, 10(8): 804-812. [37] 毛东森,郭强胜,孟 涛.氧化镁改性对纳米HZSM-5分子筛催化甲醇制丙烯的影响[J].物理化学学报,2010,26(8):2242-2248. MAO D S, GUO Q S, MENG T. Effect of magnesium oxide modification on the catalytic performance of nanoscale HZSM-5 zeolite for the conversion of methanol to propylene[J]. Acta Physico-Chimica Sinica, 2010, 26(8): 2242-2248 (in Chinese). [38] JIAO M Y, FAN S B, ZHANG J L, et al. Methanol-to-olefins over FeHZSM-5: further transformation of products[J]. Catalysis Communications, 2014, 56: 153-156. [39] KIM Y, KIM J C, JO C, et al. Structural and physicochemical effects of MFI zeolite nanosheets for the selective synthesis of propylene from methanol[J]. Microporous and Mesoporous Materials, 2016, 222: 1-8. [40] CHEN H B, WANG Y Q, SUN C, et al. Synthesis of hierarchical ZSM-5 zeolites with CTAB-containing seed silicalite-1 and its catalytic performance in methanol to propylene[J]. Catalysis Communications, 2018, 112: 10-14. [41] FENG R, YAN X L, HU X Y, et al. Surface dealumination of micro-sized ZSM-5 for improving propylene selectivity and catalyst lifetime in methanol to propylene (MTP) reaction[J]. Catalysis Communications, 2018, 109: 1-5. |