[1] MACRELLI G, VARSHNEYA A K, MAURO J C. Simulation of glass network evolution during chemical strengthening: resolution of the subsurface compression maximum anomaly[J]. Journal of Non-Crystalline Solids, 2019, 522: 119457. [2] WANG M B, JIANG L B, LI X Y, et al. Structure and mechanical response of chemically strengthened aluminosilicate glass under different post-annealing conditions[J]. Journal of Non-Crystalline Solids, 2021, 554: 120620. [3] KARLSSON S, JONSON B, STALHANDSKE C. The technology of chemical glass strengthening: a review[J]. Glass Technology-European Journal of Glass Science and Technology Part A, 2010, 51(2): 41-54. [4] 胡 伟,谈宝权,覃文城,等.化学强化玻璃的发展现状及研究展望[J].玻璃与搪瓷,2018,46(3):44-50. HU W, TAN B Q, QIN W C, et al. Development and prospects of chemically strengthened glasses[J]. Glass & Enamel, 2018, 46(3): 44-50 (in Chinese). [5] 陈 福.玻璃表面化学增强技术[J].玻璃,2019,46(6):10-14. CHEN F. The chemical strengthening technology of glass surface[J]. Glass, 2019, 46(6): 10-14 (in Chinese). [6] GRIFFITH A A. The phenomena of rupture and flows in solids[J]. Phil Trans Roy Soc, 1920, A221: 163-198. [7] VARSHNEYA A K. Chemical strengthening of glass: lessons learned and yet to be learned[J]. International Journal of Applied Glass Science, 2010, 1(2): 131-142. [8] BERNESCHI S, RIGHINI G C, PELLI S. Towards a glass new world: the role of ion-exchange in modern technology[J]. Applied Sciences, 2021, 11(10): 4610. [9] MAURO J C, TRUESDALE C M, ADIB K, et al. Chemical strengthening of alkali-free glass via pressure vessel ion exchange[J]. International Journal of Applied Glass Science, 2016, 7(4): 446-451. [10] SVENSON M N, THIRION L M, YOUNGMAN R E, et al. Effects of thermal and pressure histories on the chemical strengthening of sodium aluminosilicate glass[J]. Frontiers in Materials, 2016, 3: 14. [11] GÖSTERIȘLIOLU Y A, ERSUNDU A E, ERSUNDU M Ç, et al. Investigation the effect of weathering on chemically strengthened flat glasses[J]. Journal of Non-Crystalline Solids, 2020, 544: 120192. [12] LI X Y, JIANG L B, MOHAGHEGHIAN I, et al. New insights into nanoindentation crack initiation in ion-exchanged sodium aluminosilicate glass[J]. Journal of the American Ceramic Society, 2018, 101(7): 2930-2940. [13] 姜良宝,厉 蕾,张官理,等.化学强化铝硅酸盐玻璃研究进展[J].材料工程,2014,42(10):106-112. JIANG L B, LI L, ZHANG G L, et al. Progress in research on chemical strengthened aluminosilicate glass[J]. Journal of Materials Engineering, 2014, 42(10): 106-112 (in Chinese). [14] ALI T, SGLAVO V M. Glass: chemical and thermal strengthening[J]. Encyclopedia of Materials: Technical Ceramics and Glasses, 2021, 2: 632-646. [15] GARFINKE L, HARMON M. Ion-exchange equilibria between glass and molten salts[J]. Journal of Physical Chemistry, 1968, 72(12): 4175-4181. [16] ARAUJO R J, LIKITVANICHKUL S, THIBAULT Y, et al. Ion exchange equilibria between glass and molten salts[J]. Journal of Non-Crystalline Solids, 2003, 318(3): 262-267. [17] ARAUJO R. Thermodynamics of ion exchange[J]. Journal of Non-Crystalline Solids, 2004, 349: 230-233. [18] FU A, MAURO J C. Mutual diffusivity, network dilation, and salt bath poisoning effects in ion-exchanged glass[J]. Journal of Non-Crystalline Solids, 2013, 363: 199-204. [19] PRIETO-BLANCO X, MONTERO-ORILLE C. Theoretical modelling of ion exchange processes in glass: advances and challenges[J]. Applied Sciences, 2021, 11(11): 5070. [20] BERENBLUT I I. The mathematics of diffusion[J]. Physics Bulletin, 1956, 7(10): 276. [21] WANG M T, CHENG J S. Viscosity and thermal expansion of rare earth containing soda-lime-silicate glass[J]. Journal of Alloys and Compounds, 2010, 504(1): 273-276. [22] ZHANG L Y, GUO X J. Thermal history and its implications: a case study for ion exchange[J]. Journal of the American Ceramic Society, 2020, 103(7): 3971-3977. [23] 王承遇,陶 瑛.玻璃表面处理技术[M].北京:化学工业出版社,2004. WANG C Y, TAO Y. Glass surface treatment technology[M]. Beijing: Chemical Industry Press, 2004 (in Chinese). [24] 和阿雷.高铝硅酸盐玻璃化学强化研究[D].杭州:浙江大学,2016. HE A L. Study on chemical strengthening of high aluminosilicate glass[D]. Hangzhou: Zhejiang University, 2016 (in Chinese). [25] GY R. Ion exchange for glass strengthening[J]. Materials Science and Engineering: B, 2008, 149(2): 159-165. [26] VARSHNEYA A K, OLSON G A, KRESKI P K, et al. Buildup and relaxation of stress in chemically strengthened glass[J]. Journal of Non-Crystalline Solids, 2015, 427: 91-97. [27] SHEN J W, GREEN D J, TRESSLER R E, et al. Stress relaxation of a soda lime silicate glass below the glass transition temperature[J]. Journal of Non-Crystalline Solids, 2003, 324(3): 277-288. [28] SHETH N, HOWZEN A, CAMPBELL A, et al. Effects of tempering and heat strengthening on hardness, indentation fracture resistance, and wear of soda lime float glass[J]. International Journal of Applied Glass Science, 2019, 10(4): 431-440. [29] 田英良,李俊杰,宫汝华,等.碱铝硅酸盐玻璃化学强化关键影响因素概述[J].玻璃搪瓷与眼镜,2020,48(2):26-28+32. TIAN Y L, LI J J, GONG R H, et al. Overview of principal factors influencing chemical strengthening for alkali aluminosilicate glass[J]. Glass Enamel & Ophthalmic Optics, 2020, 48(2): 26-28+32 (in Chinese). [30] 王立祥,刘振甫,金文国.影响化学钢化玻璃质量的因素分析[J].玻璃,2012,39(4):27-31. WANG L X, LIU Z F, JIN W G. Factor analysis of chemically strengthened glass quality[J]. Glass, 2012, 39(4): 27-31 (in Chinese). [31] 王承遇.关于玻璃化学钢化若干问题的探讨(续)[J].玻璃,1982,9(4):18-20. WANG C Y. Discussion on some problems of glass chemical steeling (continued)[J]. Glass, 1982, 9(4): 18-20 (in Chinese). [32] DU W-F, KURAOKA K, AKAI T, et al. Study of Al2O3 effect on structural change and phase separation in Na2O-B2O3-SiO2 glass by NMR[J]. Journal of Materials Science, 2000, 35(19): 4865-4871. [33] 闫建华,段正康,章泽成,等.玻璃化学强化用硝酸钾盐浴失活原因分析[J].硅酸盐通报,2015,34(2):438-443. YAN J H, DUAN Z K, ZHANG Z C, et al. Analysis on the causes of the deactivation of KNO3 molten salt baths used for chemical strengthening glass[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(2): 438-443 (in Chinese). [34] SINTON C W, LACOURSE W C, O’CONNELL M J. Variations in K+-Na+ ion exchange depth in commercial and experimental float glass compositions[J]. Materials Research Bulletin, 1999, 34(14/15): 2351-2359. [35] JIANG Q, YAN J T, WANG L, et al. Chemical strengthening of Li+-containing phosphosilicate glass via a two-step ion-exchange process[J]. Journal of the Australian Ceramic Society, 2021, 57(4): 1285-1290. [36] LI X C, MENG M, LI D, et al. Strong time-dependence for strengthening a lithium disilicate parent glass and the corresponding glass-ceramic by Li+/Na+ exchange[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 100: 103394. [37] 王明忠,梁新辉,宋占财,等.熔盐配比对锂铝硅玻璃化学强化性能的影响[J].玻璃搪瓷与眼镜,2020,48(6):8-12. WANG M Z, LIANG X H, SONG Z C, et al. Effect of the ratio of molten salts on the chemically tempered performance of lithium aluminosilicate glasses[J]. Glass Enamel & Ophthalmic Optics, 2020, 48(6): 8-12 (in Chinese). [38] MOROZUMI H, YOSHIDA S, MATSUOKA J. Effect of B2O3 substitution for SiO2 in alkali aluminoborosilicate glasses on chemical strengthening[J]. Journal of the Ceramic Society of Japan, 2020, 128(1): 24-31. [39] PARK K D, HAN K, CHOI Y G, et al. Chemical strengthening of sodium aluminosilicate glasses containing P2O5 and B2O3[J]. Journal of Non-Crystalline Solids, 2021, 554: 120600. [40] HASSANI H, SGLAVO V M. Effect of Na contamination on the chemical strengthening of soda-lime silicate float glass by ion-exchange in molten potassium nitrate[J]. Journal of Non-Crystalline Solids, 2019, 515: 143-148. [41] SGLAVO V M, TALIMIAN A, OCSKO N. Influence of salt bath calcium contamination on soda lime silicate glass chemical strengthening[J]. Journal of Non-Crystalline Solids, 2017, 458: 121-128. [42] TALIMIAN A, SGLAVO V M. Ion-exchange strengthening of borosilicate glass: influence of salt impurities and treatment temperature[J]. Journal of Non-Crystalline Solids, 2017, 456: 12-21. [43] QUARANTA A, CATTARUZZA E, GONELLA F, et al. Field-assisted solid state doping of glasses for optical materials[J]. Optical Materials, 2010, 32(10): 1352-1355. [44] RIYATU N, BINTARI P L, PURWANTO H, et al. Characterization of soda-lime glass with aluminum doping as a planar wave guide using electric-field-assisted solid-state ion exchange method[J]. Journal of Physics: Conference Series, 2019, 1153: 012084. [45] THIRION L M, STRELTSOVA E, LEE W Y, et al. Compressive stress profiles of chemically strengthened glass after exposure to high voltage electric fields[J]. Journal of Non-Crystalline Solids, 2014, 394/395: 6-8. [46] TALIMIAN A, MARIOTTO G, SGLAVO V M. Electric field-assisted ion exchange strengthening of borosilicate and soda lime silicate glass[J]. International Journal of Applied Glass Science, 2017, 8(3): 291-300. [47] TALIMIAN A, SCARDI P, SGLAVO V M. Sodium-caesium electric field assisted ion exchange in a mixed-alkali (Na, K) lime silicate glass[J]. Journal of Non-Crystalline Solids, 2020, 550: 120390. [48] SIL’VESTROVICH S I, SAMKOVA L G, RAIKHEL’ A M. Ion-exchange hardening of glass with a solid-phase reagent[J]. Glass and Ceramics, 1990, 47(3): 75-76. [49] LEE J E, IM H T, KIM H S, et al. Effect of α-Al2O3 particle size in a slurry on the physical properties of chemically strengthened thin glass prepared by the spray method[J]. ACS Omega, 2020, 5(41): 26667-26672. [50] KIM S W, IM H T, LEE J E, et al. Physical properties of chemically strengthened thin glass prepared by the spray method using an original KNO3-Al2O3 slurry[J]. Materials Chemistry and Physics, 2021, 259: 123942. [51] SIL’VESTROVICH S I, SAMKOVA L G, KAZAKOV V D, et al. Strengthening industrial glasses by ion exchange with solid-phase reagents[J]. Glass and Ceramics, 1984, 41(11): 471-474. [52] KARLSSON S, GLAFO, ALI S, et al. Alkali salt vapour deposition and in-line ion exchange on flat glass surfaces[J]. Glass Technology: European Journal of Glass Science and Technology Part A, 2015, 56(6): 203-213. [53] 刘再进.我国盖板玻璃发展综述[J].玻璃,2021,48(10):61-67. LIU Z J. Review on the development of cover glass in China[J]. Glass, 2021, 48(10): 61-67 (in Chinese). [54] 郭 卫,田 芳,司敏杰,等.离子强化后超薄浮法玻璃翘曲的研究分析[J].玻璃,2021,48(3):53-56. GUO W, TIAN F, SI M J, et al. Study and analysis of warpage of ultra-thin float glass after ion strengthening[J]. Glass, 2021, 48(3): 53-56 (in Chinese). [55] 田英良,李俊杰,杨宝瑛,等.化学增强型超薄碱铝硅酸盐玻璃发展概况与展望[J].燕山大学学报,2017,41(4):283-292. TIAN Y L, LI J J, YANG B Y, et al. Development and prospect of chemically strengthened ultra-thin alkali alumina silicate glass[J]. Journal of Yanshan University, 2017, 41(4): 283-292 (in Chinese). [56] 杨国洪,徐莉华.彩虹电子玻璃基板发展历程[J].玻璃,2021,48(10):73-76. YANG G H, XU L H. The development process of the Cai-Hong(rainbow)electronic glass substrate[J]. Glass, 2021, 48(10): 73-76 (in Chinese). |