[1] YOUNG R A R, CLARK D T, CORMACK J D, et al. High temperature digital and analogue integrated circuits in silicon carbide[J]. Materials Science Forum, 2013, 740/741/742: 1065-1068. [2] BUTTAY C, PLANSON D, ALLARD B, et al. State of the art of high temperature power electronics[J]. Materials Science and Engineering: B, 2011, 176(4): 283-288. [3] MIYAZAKIA H, IWAKIRI S, HIRAO K, et al. Effect of high temperature cycling on both crack formation in ceramics and delamination of copper layers in silicon nitride active metal brazing substrates[J]. Ceramics International, 2017, 43(6): 5080-5088. [4] MIYAZAKI H, ZHOU Y, IWAKIRI S, et al. Improved resistance to thermal fatigue of active metal brazing substrates for silicon carbide power modules using tough silicon nitrides with high thermal conductivity[J]. Ceramics International, 2018, 44(8): 8870-8876. [5] 余晓初,张 辉,陆 聪,等.氮化硅陶瓷覆铜基板制备及可靠性评估[J].硅酸盐通报,2020,39(5):1614-1619. YU X C, ZHANG H, LU C, et al. Fabrication and reliability evaluation of silicon nitride-copper ceramic substrates[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1614-1619 (in Chinese). [6] 张伟儒,郑 彧,李 正,等.半导体器件用陶瓷基片材料发展现状[J].真空电子技术,2017(5):20-23. ZHANG W R, ZHENG Y, LI Z, et al. Development of ceramic substrate materials for semiconductor devices[J]. Vacuum Electronics, 2017(5): 20-23 (in Chinese). [7] 郑 彧,童亚琦,张伟儒.高导热氮化硅陶瓷基板材料研究现状[J].真空电子技术,2018(4):13-17. ZHENG Y, TONG Y Q, ZHANG W R. Research on high thermal conductivity silicon nitride ceramic substrate materials[J]. Vacuum Electronics, 2018(4): 13-17 (in Chinese). [8] YOKOTA H, YAMADA S, IBUKIYAMA M. Effect of large β-Si3N4 particles on the thermal conductivity of β-Si3N4 ceramics[J]. Journal of the European Ceramic Society, 2003, 23(8): 1175-1182. [9] KITAYAMA M, HIRAO K, TORIYAMA M, et al. Thermal conductivity of β-Si3N4: I, effects of various microstructural factors[J]. Journal of the American Ceramic Society, 1999, 82(11): 3105-3112. [10] KITAYAMA M, HIRAO K, TSUGE A, et al. Thermal conductivity of β-Si3N4: II, effect of lattice oxygen[J]. Journal of the American Ceramic Society, 2000, 83(8): 1985-1992. [11] YOKOTA H, IBUKIYAMA M. Effect of lattice impurities on the thermal conductivity of β-Si3N4[J]. Journal of the European Ceramic Society, 2003, 23(1): 55-60. [12] YOKOTA H, ABE H, IBUKIYAMA M. Effect of lattice defects on the thermal conductivity of β-Si3N4[J]. Journal of the European Ceramic Society, 2003, 23(10): 1751-1759. [13] YOKOTA H, IBUKIYAMA M. Effect of the addition of β-Si3N4 nuclei on the thermal conductivity of β-Si3N4 ceramics[J]. Journal of the European Ceramic Society, 2003, 23(8): 1183-1191. [14] KITAYAMA M, HIRAO K, WATARI K, et al. Thermal conductivity of β-Si3N4: III, effect of rare-earth (RE=La, Nd, Gd, Y, Yb, and Sc) oxide additives[J]. Journal of the American Ceramic Society, 2001, 84(2): 353-58. [15] ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity[J]. Advanced Materials, 2011, 23(39): 4563-4567. [16] ZHOU Y, OHJI T, HYUGA H, et al. Fracture resistance behavior of high-thermal-conductivity silicon nitride ceramics[J]. International Journal of Applied Ceramic Technology, 2014, 11(5): 872-882. [17] KUSANO D, HYUGA H, ZHOU Y, et al. Effect of aluminum content on mechanical properties and thermal conductivities of sintered reaction-bonded silicon nitride[J]. International Journal of Applied Ceramic Technology, 2014, 11(3): 534-542. [18] 株式会社东芝,东芝高新材料公司.氮化硅基板及使用其的氮化硅电路基板:ZL201810154404.4[P].2021-04-30. Toshiba Corporation, Toshiba Materials Co., Ltd. Silicon nitride substrate and silicon nitride circuit substrate using same: ZL201810154404.4[P]. 2021-04-30 (in Chinese). [19] 日立金属株式会社.氮化硅粉、其烧结体、基板、及由此的电路板和热电元件模块:ZL01137963.4[P].2005-03-16. Hitachi Metals Ltd. Silicon nitride powder, silicon nitride sintered body, sintered silicon nitride substrate, and circuit board and thermoelectric module comprising such sintered silicon nitride substrate: ZL01137963.4[P]. 2005-03-16 (in Chinese). [20] ZHANG J, CUI W, LI F, et al. Effects of MgSiN2 addition and post-annealing on mechanical and thermal properties of Si3N4 ceramics[J]. Ceramics International, 2020, 46(10): 15719-15722. [21] HU F, ZHAO L, XIE Z. Silicon nitride ceramics with high thermal conductivity and excellent mechanical properties fabricated with MgF2 sintering aid and post-sintering heat treatment[J]. Journal of Ceramic Science and Technology, 2016, 7(4): 423-428. [22] LIANG H Q, ZENG Y P, ZUO K H, et al. Mechanical properties and thermal conductivity of Si3N4 ceramics with YF3 and MgO as sintering additives[J]. Ceramics International, 2016, 42(14): 15679-15686. [23] WANG W D, YAO D X, LIANG H Q, et al. Improved thermal conductivity of β-Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive[J]. Journal of the American Ceramic Society, 2020, 103(10): 5567-5572. [24] ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: Ⅰ, direct crack measurements[J]. Journal of the American Ceramic Society, 1981, 64(9): 533-538. [25] LANGE F F. Volatilization associated with the sintering of polyphase Si3N4 materials[J]. Journal of the American Ceramic Society, 1982, 65(8): c120-c121. [26] 张 晶,王文雪,孙 峰,等.烧结温度对氮化硅陶瓷球显微结构和力学性能的影响[J].硅酸盐通报,2021,40(1):252-257. ZHANG J, WANG W X, SUN F, et al. Effect of sintering temperature on microstructure and mechanical properties of silicon nitride ceramic balls[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 252-257 (in Chinese). [27] PYZIK A, CARROLL D. Technology of self-reinforced silicon nitride[J]. Annual Review of Materials Research, 2003, 24(1): 189-214. [28] HAMPSHIRE S. Oxynitride glasses, their properties and crystallisation: a review[J]. Journal of Non-Crystalline Solids, 2003, 316(1): 64-73. [29] LEE H, TATAMI J, KIM D. Microstructural evolution of Si3N4 ceramics from starting powders with different α-to-β ratios[J]. Journal of the Ceramic Society of Japan, 2016, 124(8): 800-807. [30] RHEE S H, LEE J D, KIM D Y. Effect of α-Si3N4 initial powder size on the microstructural evolution and phase transformation during sintering of Si3N4 ceramics[J]. Journal of the European Ceramic Society, 2000, 20(11): 1787-1794. [31] MITOMO M, HIROSAKI N, NISHIMURA T, et al. Microstructure control in silicon nitride ceramics: a review[J]. Journal of the Ceramic Society of Japan, 2006, 114(1335): 867-872. [32] KLEEBE H J, PEZZOTTI G, ZIEGLER G. Microstructure and fracture toughness of Si3N4 ceramics: combined roles of grain morphology and secondary phase chemistry[J]. Journal of the American Ceramic Society, 1999, 82(7): 1857-1867. [33] KRSTIC Z, YU Z B, KRSTIC V D. Effect of grain width and aspect ratio on mechanical properties of Si3N4 ceramics[J]. Journal of Materials Science, 2007, 42(14): 5431-5436. [34] SUN E Y, BECHER P F, PLUCKNETT K P, et al. Microstructural design of silicon nitride with improved fracture toughness: Ⅱ, effects of yttria and alumina additives[J]. Journal of the American Ceramic Society, 1998, 81(11): 2831-2840. [35] 刘 剑,谢志鹏,肖志才,等.烧结助剂对氮化硅陶瓷热导率和力学性能的影响[J].硅酸盐学报,2020,48(12):1865-1871. LIU J, XIE Z P, XIAO Z C, et al. Effect of sintering aids on thermal conductivity and mechanical properties of silicon nitride ceramics[J]. Journal of the Chinese Ceramic Society, 2020, 48(12): 1865-1871 (in Chinese). |