欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (7): 2447-2457.

• 陶瓷 • 上一篇    下一篇

固体氧化物电池氧离子电解质研究进展

冯斌1, 刘鹏1, 杨现锋1, 谢志鹏2   

  1. 1.长沙理工大学材料科学与工程学院,长沙 410014;
    2.清华大学新型陶瓷与精细工艺国家重点实验室,北京 100084
  • 收稿日期:2022-02-19 修回日期:2022-04-10 出版日期:2022-07-15 发布日期:2022-08-01
  • 通讯作者: 刘鹏,副教授。E-mail:liupengmse@csust.edu.cn
  • 作者简介:冯斌(1995—),男,硕士研究生。主要从事中低温固体氧化物燃料电池的制备与性能研究。E-mail: 1059275236@qq.com
  • 基金资助:
    国家自然科学基金面上项目(52172063);湖南省教育厅优秀青年项目(19B038);湖南省自然科学基金面上项目(2021JJ30724)

Research Progress of Oxygen Ion Electrolyte for Solid Oxide Cells

FENG Bin1, LIU Peng1, YANG Xianfeng1, XIE Zhipeng2   

  1. 1. School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410014, China;
    2. State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
  • Received:2022-02-19 Revised:2022-04-10 Online:2022-07-15 Published:2022-08-01

摘要: 固体氧化物电池(SOCs)作为一种绿色、高效的全固态能量转换装置,既能在燃料电池模式下将氢、碳、烃、醇等燃料的化学能转化为电能,又能在电解池模式下分解水制氢,在缓解全球能源危机、实现碳中和等方面具有重要意义。然而,SOCs常用的Y2O3稳定的ZrO2(YSZ)电解质材料在1 000 ℃以上才具有较高的离子电导率,但过高的工作温度会提高运行成本,限制材料选择,并降低系统稳定性。因此,降低工作温度一直是SOCs发展的核心问题之一,开发高电导率电解质材料和降低电解质膜厚度是实现SOCs中低温化应用的主要路径。本文从材料开发和薄膜制造两方面对中低温SOCs各类氧离子电解质的研究进展进行梳理,针对ZrO2、CeO2、Bi2O3及LaGaO3基固体电解质,系统阐述了异价离子掺杂对提升氧离子电导率和稳定相结构的作用机制,介绍了电解质薄膜的制备技术和导电性能,为发展高性能固体氧化物电池电解质材料提供参考依据。

关键词: 固体氧化物电池, 固体电解质, 薄膜, 氧离子电导率, 掺杂

Abstract: As a green and efficient all-solid-state energy conversion device, solid oxide cells (SOCs) can convert the chemical energy of hydrogen, carbon, hydrocarbons, alcohols or other fuels into electrical energy in the mode of fuel cells, and produce hydrogen via water splitting in the mode of electrolytic cells. It has great significance in alleviating the global energy crisis and achieving carbon neutrality. However, Y2O3 stabilized ZrO2 (YSZ), the conventional electrolyte material of SOCs, shows a high ionic conductivity above 1 000 ℃. The working temperature is so high that many challenges need to be dealt with, such as high operating costs, limited material choice, and low system stability. Therefore, reducing operating temperature has always been a key issue for the development of SOCs, which can be realized by developing high conductivity electrolyte materials and reducing the thickness of electrolyte film. This paper makes a comprehensive review on the research progress of various oxygen ionic electrolyte materials for intermediate and low temperature SOCs in terms of material development and thin film fabrication. As far as ZrO2, CeO2, Bi2O3 and LaGaO3 based solid electrolytes are concerned, the influence mechanism of heterovalent ion doping on the increase of oxygen ion conductivity and the stability of phase structure is illustrated, and the manufacturing techniques and ionic conductive properties of the electrolyte membranes is summarized. Accordingly, this paper can serve as a reference for the development of high-performance electrolyte materials for solid oxide cells.

Key words: solid oxide cells, solid electrolyte, thin film, oxygen ion conductivity, doping

中图分类号: