硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (7): 2447-2457.
冯斌1, 刘鹏1, 杨现锋1, 谢志鹏2
收稿日期:
2022-02-19
修回日期:
2022-04-10
出版日期:
2022-07-15
发布日期:
2022-08-01
通讯作者:
刘鹏,副教授。E-mail:liupengmse@csust.edu.cn
作者简介:
冯斌(1995—),男,硕士研究生。主要从事中低温固体氧化物燃料电池的制备与性能研究。E-mail: 1059275236@qq.com
基金资助:
FENG Bin1, LIU Peng1, YANG Xianfeng1, XIE Zhipeng2
Received:
2022-02-19
Revised:
2022-04-10
Online:
2022-07-15
Published:
2022-08-01
摘要: 固体氧化物电池(SOCs)作为一种绿色、高效的全固态能量转换装置,既能在燃料电池模式下将氢、碳、烃、醇等燃料的化学能转化为电能,又能在电解池模式下分解水制氢,在缓解全球能源危机、实现碳中和等方面具有重要意义。然而,SOCs常用的Y2O3稳定的ZrO2(YSZ)电解质材料在1 000 ℃以上才具有较高的离子电导率,但过高的工作温度会提高运行成本,限制材料选择,并降低系统稳定性。因此,降低工作温度一直是SOCs发展的核心问题之一,开发高电导率电解质材料和降低电解质膜厚度是实现SOCs中低温化应用的主要路径。本文从材料开发和薄膜制造两方面对中低温SOCs各类氧离子电解质的研究进展进行梳理,针对ZrO2、CeO2、Bi2O3及LaGaO3基固体电解质,系统阐述了异价离子掺杂对提升氧离子电导率和稳定相结构的作用机制,介绍了电解质薄膜的制备技术和导电性能,为发展高性能固体氧化物电池电解质材料提供参考依据。
中图分类号:
冯斌, 刘鹏, 杨现锋, 谢志鹏. 固体氧化物电池氧离子电解质研究进展[J]. 硅酸盐通报, 2022, 41(7): 2447-2457.
FENG Bin, LIU Peng, YANG Xianfeng, XIE Zhipeng. Research Progress of Oxygen Ion Electrolyte for Solid Oxide Cells[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(7): 2447-2457.
[1] ZHAO B, LIU J W, WANG X W, et al. CO2-emission-free electrocatalytic CH3OH selective upgrading with high productivity at large current densities for energy saved hydrogen co-generation[J]. Nano Energy, 2021, 80: 105530. [2] ZHU P F, YAO J, QIAN C H, et al. High-efficiency conversion of natural gas fuel to power by an integrated system of SOFC, HCCI engine, and waste heat recovery: thermodynamic and thermo-economic analyses[J]. Fuel, 2020, 275: 117883. [3] SHCHEKLEIN S, DUBININ A. Hydrogen-methanol SOFCs for transport[J]. International Journal of Hydrogen Energy, 2021, 46(51): 25871-25877. [4] TAN L Z, DONG X M, GONG Z Q, et al. Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones[J]. Energy, 2018, 165: 1106-1118. [5] RADENAHMAD N, AZAD A T, SAGHIR M, et al. A review on biomass derived syngas for SOFC based combined heat and power application[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109560. [6] KAZEMPOOR P, BRAUN R J. Hydrogen and synthetic fuel production using high temperature solid oxide electrolysis cells (SOECs)[J]. International Journal of Hydrogen Energy, 2015, 40(9): 3599-3612. [7] NI M, LEUNG M K H, LEUNG D Y C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2337-2354. [8] XU H R, CHEN B, IRVINE J, et al. Modeling of CH4-assisted SOEC for H2O/CO2 co-electrolysis[J]. International Journal of Hydrogen Energy, 2016, 41(47): 21839-21849. [9] 舟 丹.日本家用热电联产系统[J].中外能源,2020,25(12):84. ZHOU D. Japan’s household combined heat and power system [J]. Sino-Global Energy, 2020, 25(12): 84 (in Chinese). [10] 神瑞宝,代贤忠,蒋东方,等.日本家用燃料电池热电联供系统在中国应用的经济性分析[J].中国电力,2020,53(10):74-79. SHEN R B, DAI X Z, JIANG D F, et al. Economic analysis of the application of Japan’s household fuel cell CHP system in China[J]. Electric Power, 2020, 53(10): 74-79 (in Chinese). [11] CHEN K K, HAN Y, TONG Z, et al. Membrane processes for CO2 removal and fuel utilization enhancement for solid oxide fuel cells[J]. Journal of Membrane Science, 2021, 620: 118846. [12] AGARKOV O, SHEVCHUK K, IVANYNA Y. Application of range extender based on solid oxide fuel cells (sofcs) for electrical buses: experience of Ceres power (united kingdom) and Weichai power (China) companies[J]. Avtoshliakhovyk Ukrayiny, 2021, 2(266): 22-28. [13] JIN L, GUAN W B, NIU J Q, et al. Effect of contact area and depth between cell cathode and interconnect on stack performance for planar solid oxide fuel cells[J]. Journal of Power Sources, 2013, 240: 796-805. [14] GUAN W B, DU Z G, WANG J X, et al. Mechanisms of performance degradation induced by thermal cycling in solid oxide fuel cell stacks with flat-tube anode-supported cells based on double-sided cathodes[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19840-19846. [15] JIANG J H, LI X, LI J. Modeling and model-based analysis of a solid oxide fuel cell thermal-electrical management system with an air bypass valve[J]. Electrochimica Acta, 2015, 177: 250-263. [16] 彭元亭,王 傲,韦 童,等.液态生物质燃料重整及其在固体氧化物燃料电池中的应用[J].化工进展,2021,40(6):2972-2979. PENG Y T, WANG A, WEI T, et al. Reforming of liquid bio-fuels for solid oxide fuel cell application[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2972-2979 (in Chinese). [17] 李亚超,张海峰.晋煤集团碳基燃料电池SOFC发电示范工程建设及运行[J].能源技术与管理,2019,44(5):153-156. LI Y C, ZHANG H F. Construction and operation of carbon-based SOFC power generation demonstration engineering of Shanxi coal group [J]. Energy Technology and Management, 2019, 44(5): 153-156 (in Chinese). [18] SHI H G, SU C, RAN R, et al. Electrolyte materials for intermediate-temperature solid oxide fuel cells[J]. Progress in Natural Science: Materials International, 2020, 30(6): 764-774. [19] GÓMEZ S Y, HOTZA D. Current developments in reversible solid oxide fuel cells[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 155-174. [20] GARCÍA-CAMPRUBÍ M, IZQUIERDO S, FUEYO N. Challenges in the electrochemical modelling of solid oxide fuel and electrolyser cells[J]. Renewable and Sustainable Energy Reviews, 2014, 33: 701-718. [21] ZHANG L L, CHEN G, DAI R X, et al. A review of the chemical compatibility between oxide electrodes and electrolytes in solid oxide fuel cells[J]. Journal of Power Sources, 2021, 492: 229630. [22] SASAKI K, MURANAKA M, TERAI T. Compatibility analysis of Ag and electrolyte materials for LT-SOFCs and LT-SOECs[J]. Solid State Ionics, 2010, 181(27/28): 1303-1307. [23] 王绍荣,肖 钢,叶晓峰.固体氧化物燃料电池[M].武汉:武汉大学出版社,2013:32-48. WANG S R, XIAO G, YE X F. Solid oxide fuel cell[M]. Wuhan: Wuhan University Press, 2013: 32-48 (in Chinese). [24] ZENG Z Z, QIAN Y P, ZHANG Y J, et al. A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks[J]. Applied Energy, 2020, 280: 115899. [25] HE S, JIANG S P. Electrode/electrolyte interface and interface reactions of solid oxide cells: recent development and advances[J]. Progress in Natural Science: Materials International, 2021, 31(3): 341-372. [26] SINGH M, SINGH A K. Studies on structural, morphological, and electrical properties of Ga3+ and Cu2+ co-doped ceria ceramics as solid electrolyte for IT-SOFCs[J]. International Journal of Hydrogen Energy, 2020, 45(44): 24014-24025. [27] MANSILLA Y, ARCE M, OLIVER C G, et al. Synthesis and characterization of ZrO2 and YSZ thin films[J]. Materials Today: Proceedings, 2019, 14: 92-95. [28] SHELYUG A, NAVROTSKY A. Thermodynamic stability of the fluorite phase in the CeO2-CaO-ZrO2 system[J]. Journal of Nuclear Materials, 2019, 517: 80-85. [29] MEKALA R, DEEPA B, RAJENDRAN V. Preparation, characterization and antibacterial property of rare earth (Dy and Ce) doping on ZrO2 nanoparticles prepared by co-precipitation method[J]. Materials Today: Proceedings, 2018, 5(2): 8837-8843. [30] ARACHI Y, SAKAI H, YAMAMOTO O, et al. Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system[J]. Solid State Ionics, 1999, 121(1/2/3/4): 133-139. [31] DWIVEDI S. Solid oxide fuel cell: materials for anode, cathode and electrolyte[J]. International Journal of Hydrogen Energy, 2020, 45(44): 23988-24013. [32] LEE D S, KIM W S, CHOI S H, et al. Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs[J]. Solid State Ionics, 2005, 176(1/2): 33-39. [33] BRODNIKOVSKYI Y, MCDONALD N, POLISHKO I, et al. Properties of 10Sc1CeSZ-3.5YSZ(33-, 40-, 50-wt.%) composite ceramics for SOFC application[J]. Materials Today: Proceedings, 2019, 6: 26-35. [34] CHEN K F, LÜ Z, AI N, et al. Fabrication and performance of anode-supported YSZ films by slurry spin coating[J]. Solid State Ionics, 2007, 177(39/40): 3455-3460. [35] WANG X, YU B, ZHANG W Q, et al. Microstructural modification of the anode/electrolyte interface of SOEC for hydrogen production[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12833-12838. [36] VENDRELL X, YADAV D, RAJ R, et al. Influence of flash sintering on the ionic conductivity of 8 mol% yttria stabilized zirconia[J]. Journal of the European Ceramic Society, 2019, 39(4): 1352-1358. [37] KILNER J A, BROOK R J. A study of oxygen ion conductivity in doped non-stoichiometric oxides[J]. Solid State Ionics, 1982, 6(3): 237-252. [38] ANGLE J P, STEPPAN J J, THOMPSON P M, et al. Parameters influencing thermal shock resistance and ionic conductivity of 8mol% yttria-stabilized zirconia (8YSZ) with dispersed second phases of alumina or mullite[J]. Journal of the European Ceramic Society, 2014, 34(16): 4327-4336. [39] BASU S, ALAM M N, BASU S, et al. 8YSZ-carbonate composite electrolyte-conductivity enhancement[J]. Journal of Alloys and Compounds, 2020, 816: 152561. [40] BOUHAMED H. Improved structural stability and electrochemical performance of 8YSZ electrolyte by MxOy doping for low temperature solid oxide fuel cells (LT-SOFCs)[J]. Materials Science and Engineering: B, 2017, 225: 182-188. [41] XU X Y, XIA C R, HUANG S G, et al. YSZ thin films deposited by spin-coating for IT-SOFCs[J]. Ceramics International, 2005, 31(8): 1061-1064. [42] YU B, ZHANG W Q, XU J M, et al. Preparation and electrochemical behavior of dense YSZ film for SOEC[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12074-12080. [43] WANG Z H, SUN K N, SHEN S Y, et al. Preparation of YSZ thin films for intermediate temperature solid oxide fuel cells by dip-coating method[J]. Journal of Membrane Science, 2008, 320(1/2): 500-504. [44] 谢永敏,王晓强,刘 江,等.管式电解质支撑型直接碳固体氧化物燃料电池的浸渍法制备及电性能[J].物理化学学报,2017,33(2):386-392. XIE Y M, WANG X Q, LIU J, et al. Fabrication and performance of tubular electrolyte-supporting direct carbon solid oxide fuel cell by dip coating technique[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 386-392 (in Chinese). [45] 杨志宾,郑紫微,朱腾龙,等.阳极支撑三层一体化结构电池的制备及性能[J].硅酸盐学报,2013,41(2):129-133. YANG Z B, ZHENG Z W, ZHU T L, et al. Preparation and performance of tri-layer composite anode supported fuel cell[J]. Journal of the Chinese Ceramic Society, 2013, 41(2): 129-133 (in Chinese). [46] ALFECHE D M, CERVERA R B. Highly conducting Sc and Y co-doped ZrO2 thin film solid electrolyte on a porous Ni/YSZ electrode prepared via simple drop-coating method[J]. Ceramics International, 2020, 46(8): 10561-10567. [47] CHO G Y, LEE Y H, HONG S W, et al. High-performance thin film solid oxide fuel cells with scandia-stabilized zirconia (ScSZ) thin film electrolyte[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15704-15708. [48] DA SILVA F S, DE SOUZA T M. Novel materials for solid oxide fuel cell technologies: a literature review[J]. International Journal of Hydrogen Energy, 2017, 42(41): 26020-26036. [49] SREEDHAR I, AGARWAL B, GOYAL P, et al. Recent advances in material and performance aspects of solid oxide fuel cells[J]. Journal of Electroanalytical Chemistry, 2019, 848: 113315. [50] AWANG M Z, NADARAJA S K, ZAKARIA Z, et al. Fabrication and characterization of YSZ/ScSZ bilayer electrolyte via cold-isostatic pressing (CIP) method for intermediate temperature-solid oxide fuel cell (IT-SOFC) application[J]. International Journal of Integrated Engineering, 2019, 11(7): 201-208. [51] NOMURA K, MIZUTANI Y, KAWAI M, et al. Aging and Raman scattering study of scandia and yttria doped zirconia[J]. Solid State Ionics, 2000, 132(3/4): 235-239. [52] FERGUS J W. Electrolytes for solid oxide fuel cells[J]. Journal of Power Sources, 2006, 162(1): 30-40. [53] XUE Q N, HUANG X W, ZHANG H, et al. Synthesis and characterization of high ionic conductivity ScSZ core/shell nanocomposites[J]. Journal of Rare Earths, 2017, 35(6): 567-573. [54] JIN C, MAO Y C, ZHANG N Q, et al. Fabrication and characterization of Ni-SSZ gradient anodes/SSZ electrolyte for anode-supported SOFCs by tape casting and co-sintering technique[J]. International Journal of Hydrogen Energy, 2015, 40(26): 8433-8441. [55] YUAN K, SONG C, CHEN G, et al. Preparation of dense ScSZ thin films by plasma spraying with densified ScSZ powders[J]. International Journal of Hydrogen Energy, 2021, 46(15): 9749-9757. [56] SHI H G, RAN R, SHAO Z P. Wet Powder spraying fabrication and performance optimization of IT-SOFCs with thin-film ScSZ electrolyte[J]. International Journal of Hydrogen Energy, 2012, 37(1): 1125-1132. [57] CHIBA R, YOSHIMURA F, YAMAKI J, et al. Ionic conductivity and morphology in Sc2O3 and Al2O3 doped ZrO2 films prepared by the Sol-gel method[J]. Solid State Ionics, 1997, 104(3/4): 259-266. [58] YUAN F, WANG J X, MIAO H, et al. Investigation of the crystal structure and ionic conductivity in the ternary system (Yb2O3)x-(Sc2O3)(0.11-x)-(ZrO2)0.89(x=0-0.11)[J]. Journal of Alloys and Compounds, 2013, 549: 200-205. [59] SHIMAZU M, ISOBE T, ANDO S, et al. Stability of Sc2O3 and CeO2 co-doped ZrO2 electrolyte during the operation of solid oxide fuel cells[J]. Solid State Ionics, 2011, 182(1): 120-126. [60] HIRANO M, ODA T, UKAI K, et al. Effect of Bi2O3 additives in Sc stabilized zirconia electrolyte on a stability of crystal phase and electrolyte properties[J]. Solid State Ionics, 2003, 158(3/4): 215-223. [61] CAO J F, SU C, JI Y X, et al. Recent advances and perspectives of fluorite and perovskite-based dual-ion conducting solid oxide fuel cells[J]. Journal of Energy Chemistry, 2021, 57: 406-427. [62] PUENTE-MARTÍNEZ D E, DÍAZ-GUILLÉN J A, MONTEMAYOR S M, et al. High ionic conductivity in CeO2 SOFC solid electrolytes; effect of Dy doping on their electrical properties[J]. International Journal of Hydrogen Energy, 2020, 45(27): 14062-14070. [63] KIM D J. Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide[M=Hf4+, Zr4+, Ce4+, Th4+, U4+]solid solutions[J]. Journal of the American Ceramic Society, 1989, 72(8): 1415-1421. [64] MOLENDA J, S'WIERCZEK K, ZAJAC W. Functional materials for the IT-SOFC[J]. Journal of Power Sources, 2007, 173(2): 657-670. [65] SUGIHARA K, ASAMOTO M, ITAGAKI Y, et al. A quantitative analysis of influence of Ni particle size of SDC-supported anode on SOFC performance: effect of particle size of SDC support[J]. Solid State Ionics, 2014, 262: 433-437. [66] ARABACI A, ÖKSÜZÖMER M F. Preparation and characterization of 10mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications[J]. Ceramics International, 2012, 38(8): 6509-6515. [67] 吉春艳,徐 庆,廖园富,等.Gd(Sm)掺杂CeO2的沉淀法合成与导电性能研究[J].电子元件与材料,2006,25(9):22-24+42. JI C Y, XU Q, LIAO Y F, et al. Co-precipitation synthesis and oxygen ionic conducting properties of Gd-or Sm-doped CeO2[J]. Electronic Components and Materials, 2006, 25(9): 22-24+42 (in Chinese). [68] ZHOU M, ZHENG Y F, GE L, et al.Synthesis of Gd2O3 and Y2O3 co-doped ceria-based electrolyte materials for intermediate temperature SOFC[J]. Journal of the Chinese Ceramic Society, 2011, 06: 1012-1016. [69] 邵凌波,田长安,梁 升,等.固体氧化物燃料电池电解质材料Ce0.8Sm0.2-xCuxO1.9-δ的制备与性能研究[J].硅酸盐通报,2020,39(5):1608-1613. SHAO L B, TIAN C G, LIANG S, et al. Preparation and properties of solid oxide fuel cell electrolyte material Ce0.8Sm0.2-xCuxO1.9-δ[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1608-1613 (in Chinese). [70] MAHESHWARI A, WIEMHÖFER H D. Sr2+-Gd3+ co-doped CeO2: a cost-effective variant for IT-SOFC electrolytes[J]. Ceramics International, 2015, 41(7): 9122-9130. [71] MACA K, CIHLAR J, CASTKOVA K, et al. Sintering of gadolinia-doped ceria prepared by mechanochemical synthesis[J]. Journal of the European Ceramic Society, 2007, 27(13/14/15): 4345-4348. [72] CHITRAPRIYA N S, SANDHYA K, ASWATHY P K, et al. Sb3+ and Gd3+ co-doped cerium oxide nanocrystalline ceramic system: structural and dielectric studies[J]. Materials Today: Proceedings, 2019, 10: 46-51. [73] 杨志宾,朱腾龙,项文龙,等.Li2O助烧的Gd0.1Ce0.9O1.95烧结过程及其电导性能研究[J].无机材料学报,2015,30(4):345-350. YANG Z B, ZHU T L, XIANG W L, et al. Sintering behavior and electrical conductivity of Gd0.1Ce0.9O1.95 with Li2O additives[J]. Journal of Inorganic Materials, 2015, 30(4): 345-350 (in Chinese). [74] STEELE B C H. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 ℃[J]. Solid State Ionics, 2000, 129(1/2/3/4): 95-110. [75] GAO P P, BOLON A, TANEJA M, et al. Thermal expansion and elastic moduli of electrolyte materials for high and intermediate temperature solid oxide fuel cell[J]. Solid State Ionics, 2017, 300: 1-9. [76] QIAN J L, GONG Z, WANG M, et al. Generating an electron-blocking layer with BaMn1-xNixO3 mixed-oxide for Ce0.8Sm0.2O2-δ-based solid oxide fuel cells[J]. Ceramics International, 2018, 44(11): 12739-12744. [77] YANG S H, CHOI H W. Fabrication of YSZ/GDC bilayer electrolyte thin film for solid oxide fuel cells[J]. Transactions on Electrical and Electronic Materials, 2014, 15(4): 189-192. [78] SUN H B, GUO X, YU F Y, et al. Enhanced sinterability and electrical performance of Sm2O3 doped CeO2/BaCeO3 electrolytes for intermediate-temperature solid oxide fuel cells through Bi2O3 co-doping[J]. Ceramics International, 2019, 45(6): 7667-7672. [79] HARWIG H A, GERARDS A G. Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide[J]. Journal of Solid State Chemistry, 1978, 26(3): 265-274. [80] JIANG N X, WACHSMAN E D. Structural stability and conductivity of phase-stabilized cubic bismuth oxides[J]. Journal of the American Ceramic Society, 1999, 82(11): 3057-3064. [81] SHUK P, WIEMHÖFER H D, GUTH U, et al. Oxide ion conducting solid electrolytes based on Bi2O3[J]. Solid State Ionics, 1996, 89(3/4): 179-196. [82] LAURENT K, WANG G Y, TUSSEAU-NENEZ S, et al. Structure and conductivity studies of electrodeposited δ-Bi2O3[J]. Solid State Ionics, 2008, 178(33/34): 1735-1739. [83] LUAN J P, ZHANG J D, YAO X M, et al. Controlled synthesis and growth mechanism of Bi2O3/YSZ solid electrolyte materials[J]. Ceramics International, 2016, 42(14): 16262-16265. [84] RAGHVENDR A, SINGH P. Influence of Bi2O3 additive on the electrical conductivity of calcia stabilized zirconia solid electrolyte[J]. Journal of the European Ceramic Society, 2015, 35(5): 1485-1493. [85] ERMIŞ Í, ARI M, ACER S D, et al. Phase stability and electric conductivity of Eu2O3-Tb4O7 co-doped Bi2O3 electrolyte[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9485-9490. [86] LI Y, WANG C Z. Investigation on pumping oxygen characteristics of (Bi2O3)0.73(Y2O3)0.27 solid electrolyte[J]. Journal of Rare Earths, 2008, 26(3): 337-340. [87] ZHEN Q, KALE G M, SHI G, et al. Processing of dense nanocrystalline Bi2O3-Y2O3 solid electrolyte[J]. Solid State Ionics, 2005, 176(37/38): 2727-2733. [88] TAKAHASHI T, ESAKA T, IWAHARA H. Conduction in Bi2O3-based oxide ion conductors under low oxygen pressure. I. Current blackening of the Bi2O3-Y2O3 electrolyte[J]. Journal of Applied Electrochemistry, 1977, 7(4): 299-302. [89] FUNG K Z, VIRKAR A V. Phase stability, phase transformation kinetics, and conductivity of Y2O3-Bi2O3 solid electrolytes containing aliovalent dopants[J]. Journal of the American Ceramic Society, 1991, 74(8): 1970-1980. [90] KRUIDHOF H, VRIES K J D, BURGGRAAF A. Thermochemical stability and nonstoichiometry of yttria-stabilized bismuth oxide solid solutions[J]. Solid State Ionics, 1990, 37: 213-215. [91] CHEN R, ZHANG S L, LI C J, et al. Plasma-sprayed high-performance (Bi2O3)0.75(Y2O3)0.25 electrolyte for intermediate-temperature solid oxide fuel cells (IT-SOFCs)[J]. Journal of Thermal Spray Technology, 2021, 30(1/2): 196-204. [92] PANUH D, MUHAMMED ALI S A, YULIANTO D, et al. Effect of yttrium-stabilized bismuth bilayer electrolyte thickness on the electrochemical performance of anode-supported solid oxide fuel cells[J]. Ceramics International, 2021, 47(5): 6310-6317. [93] KOSTOGLOUDIS G C, FTIKOS C. Thermal expansion and electrical conductivity of (Bi2O3)1-x(Pr2O113)x solid electrolytes[J]. Journal of the European Ceramic Society, 1998, 18(12): 1711-1715. [94] CHOU T, LIU L D, WEI W C J. Phase stability and electric conductivity of Er2O3-Nb2O5 co-doped Bi2O3 electrolyte[J]. Journal of the European Ceramic Society, 2011, 31(16): 3087-3094. [95] LAARIF A, THEOBALD F. The lone pair concept and the conductivity of bismuth oxides Bi2O3[J]. Solid State Ionics, 1986, 21(3): 183-193. [96] ISHIHARA T, MATSUDA H, TAKITA Y. ChemInform abstract: doped LaGaO3 perovskite type oxide as a new oxide ionic conductor[J]. Journal of the American Ceramic Society, 1994, 116(9): 3801-3803. [97] LAPINA A, LI S, BERGMAN B, et al. Synthesis of La0.9Sr0.1Ga0.8Mg0.2O2.85 powder by gel combustion route with two-step doping strategy[J]. Journal of the European Ceramic Society, 2012, 32(10): 2325-2331. [98] TRAINA K, HENRIST C, VERTRUYEN B, et al. Dense La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte for IT-SOFC’s: sintering study and electrochemical characterization[J]. Journal of Alloys and Compounds, 2010, 509(5): 1493-1500. [99] KIM K J, CHOI S W, KIM M Y, et al. Fabrication characteristics of SOFC single cell with thin LSGM electrolyte via tape-casting and co-sintering[J]. Journal of Industrial and Engineering Chemistry, 2016, 42: 69-74. [100] KUĞUOĞLU R S, ALTINÇEKIÇ T G, ÖZDEMIR H, et al. Preparation and characterization of La0.8Sr0.2Ga0.83Mg0.17O3 electrolyte by polyol method for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(21): 16733-16738. [101] YAMAJI K, HORITA T, ISHIKAWA M, et al. Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere[J]. Solid State Ionics, 1999, 121(1/2/3/4): 217-224. [102] ZHANG X G, OHARA S, OKAWA H, et al. Interactions of a La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte with Fe2O3, Co2O3 and NiO anode materials[J]. Solid State Ionics, 2001, 139(1/2): 145-152. [103] YI J Y, CHOI G M. The effect of reduction atmosphere on the LaGaO-3 based solid oxide fuel cell[J]. Journal of the European Ceramic Society, 2005, 25(12): 2655-2659. [104] BI Z H, YI B L, WANG Z W, et al. A high-performance anode-supported SOFC with LDC-LSGM bilayer electrolytes[J]. Electrochemical and Solid-State Letters, 2004, 7(5): A105. [105] HONG J E, INAGAKI T, IDA S, et al. Improved sintering and electrical properties of La-doped CeO2 buffer layer for intermediate temperature solid oxide fuel cells using doped LaGaO3 film prepared by screen printing process[J]. Journal of Solid State Electrochemistry, 2012, 16(4): 1493-1502. [106] WANG L S, LI C X, LI C J, et al. Performance of La0.8Sr0.2Ga0.8Mg0.2O3-based SOFCs with atmospheric plasma sprayed La-doped CeO2 buffer layer[J]. Electrochimica Acta, 2018, 275: 208-217. [107] WEI T, SINGH P, GONG Y H, et al. Sr3-3xNa3xSi3O9-1.5x (x=0.45) as a superior solid oxide-ion electrolyte for intermediate temperature-solid oxide fuel cells[J]. Energy Environ Sci, 2014, 7(5): 1680-1684. [108] YAN B J, LI M, ZHANG J Y, et al. Structural and electrical properties of La2-xBaxMo2O9-x/2 (x=0-0.18)[J]. Materials Research Bulletin, 2010, 45(4): 382-387. [109] SINGH P, GOODENOUGH J B. Monoclinic Sr1-xNaxSiO3-0.5x: new superior oxide ion electrolytes[J]. Journal of the American Chemical Society, 2013, 135(27): 10149-10154. [110] TIAN C A, SHAO L B, JI D D, et al. Synthesis and characterization of tungsten and Barium co-doped La2Mo2O9 by sol-gel process for solid oxide fuel cells[J]. Journal of Rare Earths, 2019, 37(9): 984-988. |
[1] | 万瑞, 杨利青, 霍伟荣, 马园, 李生武, 郭晨, 王鹏飞. 中红外碲酸盐玻璃及光纤研究进展[J]. 硅酸盐通报, 2022, 41(8): 2589-2603. |
[2] | 付哲, 姚彬, 李浩, 张美荣, 邓磊波. MgO-Al2O3-SiO2系透明玻璃陶瓷研究进展[J]. 硅酸盐通报, 2022, 41(8): 2910-2917. |
[3] | 陈一凡, 唐国钦, 赵春霞, 陈业凯. 富勒醇修饰氮掺杂二氧化钛复合材料及其光催化性能研究[J]. 硅酸盐通报, 2022, 41(8): 2935-2942. |
[4] | 汪跃群, 项光磊, 高亮. Sm掺杂Pb(Mg1/3Nb2/3)O3-PZT压电陶瓷的研究[J]. 硅酸盐通报, 2022, 41(4): 1433-1439. |
[5] | 常宏, 常香玉, 苏世阳, 陈绘丽. Ce掺杂La0.7Sr0.3Cr0.5Fe0.5O3-δ材料的制备及其电化学性能[J]. 硅酸盐通报, 2022, 41(3): 1012-1019. |
[6] | 周治, 王艺颖, 周华将, 雷丽勤, 王金秀, 陈渝. 0.06BiYbO3-0.94Pb(Zr0.48Ti0.52)O3三元系压电陶瓷的氧化物掺杂改性研究[J]. 硅酸盐通报, 2022, 41(3): 1020-1030. |
[7] | 李静, 刘金坤, 颜廷亭, 冷崇燕, 陈希亮, 陈庆华. 磁性羟基磷灰石制备的研究进展[J]. 硅酸盐通报, 2022, 41(1): 302-311. |
[8] | 张衡, 吴赟, 李道谦, 李卓霖, 王怡洋, 吴松松, 孙志远, 温广武. 热处理气氛对SiBON陶瓷材料析晶行为的影响[J]. 硅酸盐通报, 2021, 40(9): 3114-3121. |
[9] | 黄晋萍, 陈庆, 李建保, 骆丽杰, 陈拥军. Ga掺杂FeNb11O29材料的制备及其电化学性能[J]. 硅酸盐通报, 2021, 40(8): 2740-2747. |
[10] | 孙佳欣, 周炳卿. 氮化硅薄膜生长随时间演化过程及其特性研究[J]. 硅酸盐通报, 2021, 40(7): 2396-2400. |
[11] | 官敏, 于涛, 常郑, 胡匡艺, 盖琳琳, 艾晓晶, 盛嘉诚, 储静远. 太阳能光伏产业智能化开发及应用[J]. 硅酸盐通报, 2021, 40(3): 693-703. |
[12] | 陈培, 周昌荣. 离子对(Nb5+-Cr3+)掺杂对0.93Bi0.5Na0.5TiO3-0.07BaTiO3陶瓷微观结构和电学性能的影响[J]. 硅酸盐通报, 2021, 40(3): 970-977. |
[13] | 盛浩, 刘琳, 徐键, 卢焕明. 掺杂石墨烯的ZnO复合材料研究进展[J]. 硅酸盐通报, 2021, 40(3): 999-1006. |
[14] | 林聪毅, 孙小曼, 李蔚. TiO2与SiO2掺杂对Al2O3相转变的研究[J]. 硅酸盐通报, 2021, 40(2): 587-590. |
[15] | 陈彦广, 孙杰, 吴晓辉, 张亚男, 邓冀童, 韩洪晶, 张梅, 关金双. 钴掺杂NaP分子筛合成及其吸附Pb(II)性能[J]. 硅酸盐通报, 2021, 40(2): 653-657. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||