[1] ADSKA W S. Controlled low-strength materials (CLSM)[C]. Detroit: American Concrete Institute, 1994. [2] AMERI F, SHOAEI P, ZAREEI S A, et al. Geopolymers vs. alkali-activated materials (AAMs): a comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars[J]. Construction and Building Materials, 2019, 222: 49-63. [3] HWANHG C L, CHIANG C H, HUYNH T P, et al. Properties of alkali-activated controlled low-strength material produced with waste water treatment sludge, fly ash, and slag[J]. Construction and Building Materials, 2017, 135: 459-471. [4] 朱浩泽,于峰泉,耿 健,等.钛石膏基可控低强度材料强度及体积稳定性研究[J].硅酸盐通报,2021,40(11):3644-3653. ZHU H Z, YU F Q, GENG J, et al. Strength and volume stability of controlled low-strength material based on titanium gypsum[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3644-3653 (in Chinese). [5] 张雪松,俞然刚,陈金平,等.废弃输油管道充填用可控低强度材料性能研究[J].硅酸盐通报,2017,36(6):1823-1840. ZHANG X S, YU R G, CHEN J P, et al. Properties of controlled low-strength materials using in waste oil pipeline[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(6): 1823-1840 (in Chinese). [6] XIAO R, POLACZYK P, JIANG X, et al. Cementless controlled low-strength material (CLSM) based on waste glass powder and hydrated lime: synthesis, characterization and thermodynamic simulation[J]. Construction and Building Materials, 2021, 275: 122157. [7] MANH D O, KANG G O, KIM Y S. Development of a new cementless binder for controlled low strength material (CLSM) using entirely by-products[J]. Construction and Building Materials, 2019, 206: 576-589. [8] 卿三成,马丽萍,杨 静,等.水玻璃激发下HBSS-PG-AC复合胶凝材料水化性能分析[J].硅酸盐通报,2021,40(12):4052-4060+4069. QIN S C, MA L P, YANG J, et al. Analysis of hydration properties of HBSS-PG-AC composite cementitious materials excited by sodium silicate[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(12): 4052-4060+4069 (in Chinese). [9] WANG G, WANG Y, GAO Z. Use of steel slag as a granular material: volume expansion prediction and usability criteria[J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 555-560. [10] 吕擎峰,王子帅,谷留杨,等.硫酸钠对碱激发粉煤灰基地质聚物的强度及微观结构的影响(英文)[J].Journal of Central South University,2020,27(6):1691-1702. LV Q F, WANG Z S, GU L Y, et al.Effect of sodium sulfate on strength and microstructure of alkali-activated fly ash based geopolymer[J]. Journal of Central South University, 2020, 27(6): 1691-1702. [11] DENG G, HE Y J, LU L N, et al. Evolution of aluminate hydrate phases in fly ash-cement system under the sulfate conditions[J]. Construction and Building Materials, 2020, 252: 119045. [12] LOTHENBACH B, SCRIVENER K, HOOTON R D. Supplementary cementitious materials[J]. Cement and concrete research, 2011, 41(12): 1244-1256. [13] 杨海霞,刘 琼,翟 晶,等.水泥水化C-S-H的力学性能计算研究[J].四川水泥,2019(1):3. YANG H X, LIU Q, ZHAI J, et al. Mechanical performance of cement hydrated C-S-H[J]. Sichuan Cement, 2019(1): 3 (in Chinese). [14] ZHEN G Y, ZHOU H Y, ZHAO T T, et al. Performance appraisal of controlled low-strength material using sewage sludge and refuse incineration bottom ash[J]. Chinese Journal of Chemical Engineering, 2012, 20(1): 80-88. [15] 杨 达,卢明阳,宋 迪,等.地质聚合物水泥的研究进展[J].材料导报,2021,35(s1):644-649. YANG D, LU M Y, SONG D, et al. Research progress of geopolymer cement[J]. Materials Reports, 2021, 35(s1): 644-649 (in Chinese). [16] 童国庆,张吾渝,高义婷,等.碱激发粉煤灰地聚物的力学性能及微观机制研究[J].材料导报,2022,36(4):129-134. TONG G Q, ZHANG W Y, GAO Y T, et al. Mechanical properties and micromechanism of alkali-activated fly ash geopolymer[J]. Materials Reports, 2022, 36(4): 129-134 (in Chinese). [17] 段思宇.钢渣-粉煤灰-脱硫石膏复合胶凝体系的反应机制及应用研究[D].太原:山西大学,2020. DUAN S Y. Reaction mechanisms and application study of steel slag-fly ash-desulfurized gypsum composite cementitious system[D]. Taiyuan: Shanxi University, 2020 (in Chinese). [18] ACHRAF H, KHADIR G E, YASSINE T, et al. Phosphogypsum and black steel slag as additives for ecological bentonite-based materials: microstructure and characterization[J]. Minerals, 2020, 10(12): 1067. [19] ZOU F B, ZHANG M, HU C L, et al. Novel C-A-S-H/PCE nanocomposites: design, characterization and the effect on cement hydration[J]. Chemical Engineering Journal, 2021, 412: 128569. [20] 周继凯,黄俊凯,林成欢.水化硅酸钙力学性能分子动力学模拟方法对比研究[J].科学技术与工程, 2015, 15(28):179-183. ZHOU J K, HUANG J K, LIN C H. Comparison study of methods in molecular dynamics simulation on the mechanical properties of calcium silicate hydrate[J]. Science Technology and Engineering, 2015, 15(28): 179-183 (in Chinese). [21] LOTHENBACH B, KULIK D A, MATSCHEI T, et al. Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials[J]. Cement and Concrete Research, 2019, 115: 472-506. |