[1] HAGER I. Behaviour of cement concrete at high temperature[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61(1): 145-154. [2] GOODE M. Fire protection of structural steel in high-rise buildings[R]. Gaithersburg: National Institute of Standards and Technology, 2004: 88. [3] MARIAPPAN T. Recent developments of intumescent fire protection coatings for structural steel: a review[J]. Journal of Fire Sciences, 2016, 34(2): 120-163. [4] WALD F, DA SILVA L S, MOORE D B, et al. Experimental behaviour of a steel structure under natural fire[J]. Fire Safety Journal, 2006, 41(7): 509-522. [5] 黄 滢,万 琳.钢结构防火问题探析[J].江西科技师范学院学报,2003(5):15-18. HUANG Y, WAN L. Analysis of the fire-protection of steel structures[J]. Journal of Jiangxi Science & Technology Teahers’ College, 2003(5): 15-18 (in Chinese). [6] 肖新颜,涂伟萍,杨卓如,等.膨胀型防火涂料的阻燃机理研究[J].华南理工大学学报(自然科学版),1998(12):77-82. XIAO X Y, TU W P, YANG Z R, et al. Study on fire resistant mechanisms of intumescent coatings[J]. Journal of South China University of Technology (Natural Science Edition), 1998(12): 77-82 (in Chinese). [7] 李 风,覃文清.钢结构防火涂料的研究和应用[J].涂料工业,1999,29(3):31-34. LI F, QIN W Q. Study and application of fire retardant coatings for steel structures[J]. Paint & Coatings Industry, 1999, 29(3): 31-34 (in Chinese). [8] DUAN X M, HE P G, ZHOU Y, et al. Progress on the formation of ceramics and ceramic-based composites through geopolymer precursors[J]. Chinese Science Bulletin, 2015, 60(3): 226-235. [9] NAIR B G, ZHAO Q, COOPER R F. Geopolymer matrices with improved hydrothermal corrosion resistance for high-temperature applications[J]. Journal of Materials Science, 2007, 42(9): 3083-3091. [10] 贾德昌,何培刚,苑景坤,等.铝硅酸盐聚合物及其复合材料研究进展[J].硅酸盐学报,2017,45(12):1721-1737. JIA D C, HE P G, YUAN J K, et al. Development of geopolymer and geopolymer-based composites[J]. Journal of the Chinese Ceramic Society, 2017, 45(12): 1721-1737 (in Chinese). [11] 许凌云,张祖华,史才军,等.地质聚合物混凝土力学性能和结构性能的研究进展[J].材料导报,2022(7):1-29[2021-12-28].http://kns.cnki.net/kcms/detail/50.1078.tb.20211207.1027.006.html. XU L Y, ZHANG Z H, SHI C J, et al. Research progress on mechanical properties and structural performance of geopolymer concete[J]. Materials Rport, 2022(7): 1-29 [2021-12-28]. http://kns.cnki.net/kcms/detail/50.1078.tb.20211207.1027.006.html (in Chinese). [12] LI N, SHI C J, WANG Q, et al. Composition design and performance of alkali-activated cements[J]. Materials and Structures, 2017, 50(3): 178. [13] LAHOTI M, WONG K K, YANG E H, et al. Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature[J]. Ceramics International, 2018, 44(5): 5726-5734. [14] 诸华军,姚 晓,张祖华.矿渣掺量对偏高岭土碱激发过程和产物性能的影响[J].非金属矿,2008,31(4):16-17+65. ZHU H J, YAO X, ZHANG Z H. Effect of slag addition on alkali-activated process of metakaolin and performance of its product[J]. Non-Metallic Mines, 2008, 31(4): 16-17+65 (in Chinese). [15] PIASTA J. Heat deformations of cement paste phases and the microstructure of cement paste[J]. Materials and Structures, 1984, 17(6): 415-420. [16] CASTELLOTE M, ALONSO C, ANDRADE C, et al. Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction[J]. Cement and Concrete Research, 2004, 34(9): 1633-1644. [17] LI M S, LUO R, QIN L L, et al. High temperature properties of graphene oxide modified metakaolin based geopolymer paste[J]. Cement and Concrete Composites, 2022, 125: 104318. |