[1] HAGGERTY J S, LIGHTFOOT A. Opportunities for enhancing the thermal conductivities of SiC and Si3N4 ceramics through improved processing[J]. Ceramic Engineering and Science Proceedings. 1995, 16(4): 475-487. [2] HIROSAKI N, OGATA S, KOCER C, et al. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β-Si3N4[J]. Physical Review B, 2002, 65(13): 134110. [3] WANG W D, YAO D X, CHEN H B, et al. ZrSi2-MgO as novel additives for high thermal conductivity of β-Si3N4 ceramics[J]. Journal of the American Ceramic Society, 2020, 103(3): 2090-2100. [4] WANG W D, YAO D X, LIANG H Q, et al. Effect of in situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of β-Si3N4 ceramics[J]. Journal of the European Ceramic Society, 2020, 40(15): 5316-5323. [5] WANG W D, YAO D X, LIANG H Q, et al. Improved thermal conductivity of β-Si3N4 ceramics through the modification of the liquid phase by using GdH2 as a sintering additive[J]. Ceramics International, 2021, 47(4): 5631-5638. [6] WANG W D, YAO D X, LIANG H Q, et al. Enhanced thermal conductivity in Si3N4 ceramics prepared by using ZrH2 as an oxygen getter[J]. Journal of Alloys and Compounds, 2021, 855: 157451. [7] 范德蔚.高导热氮化硅陶瓷的制备及性能研究[D].淄博:山东理工大学,2012:13-14. FAN D W. Study on fabrication and properties of silicon nitride ceramics with high thermal conductivity[D]. Zibo: Shandong University of Technology, 2012: 13-14 (in Chinese). [8] ISLAM A S M J, ISLAM M S, FERDOUS N, et al. Vacancy-induced thermal transport in two-dimensional silicon carbide: a reverse non-equilibrium molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2020, 22(24): 13592-13602. [9] KHALKHALI M, KHOEINI F. Impact of torsion and disorder on the thermal conductivity of Si nanowires: a nonequilibrium molecular dynamics study[J]. Journal of Physics and Chemistry of Solids, 2018, 112: 216-221. [10] 王 鑫,鲁 丹,申胜平.Ni/Al层合结构热传导性能的非平衡分子动力学研究[J].中国科学:物理学 力学 天文学,2014,44(5):506-513. WANG X, LU D, SHEN S P. Heat transfer in the Ni/Al laminated structure via nonequilibrium molecular dynamics[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(5): 506-513 (in Chinese). [11] DE BRITO MOTA F, JUSTO J F, FAZZIO A. Structural properties of amorphous silicon nitride[J]. Physical Review B, 1998, 58(13): 8323-8328. [12] MUNETOH S, MOTOOKA T, MORIGUCHI K, et al. Interatomic potential for Si—O systems using Tersoff parameterization[J]. Computational Materials Science, 2007, 39(2): 334-339. [13] OKEKE O U, LOWTHER J E. Molecular dynamics of binary metal nitrides and ternary oxynitrides[J]. Physica B: Condensed Matter, 2009, 404(20): 3577-3581. [14] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. [15] FUKUDA Y, HARADA K, YONETSU M, et al. Relation between crystal structure and lattice oxygen content of sintered reaction-bonded silicon nitride[J]. Journal of the American Ceramic Society, 2021, 104(12): 6563-6571. [16] WANG Y, ZHAN H F, XIANG Y, et al. Effect of covalent functionalization on thermal transport across graphene-polymer interfaces[J]. The Journal of Physical Chemistry C, 2015, 119(22): 12731-12738. [17] LIU D J, YANG P, YUAN X, et al. The defect location effect on thermal conductivity of graphene nanoribbons based on molecular dynamics[J]. Physics Letters A, 2015, 379(9): 810-814. [18] KUWABARA A, MATSUNAGA K, TANAKA I. Lattice dynamics and thermodynamical properties of silicon nitride polymorphs[J]. Physical Review B, 2008, 78(6): 064104. [19] LOONG C K, VASHISHTA P, KALIA R K, et al. Crystal structure and phonon density of states of high-temperature ceramic silicon nitride[J]. Europhysics Letters (EPL), 1995, 31(4): 201-206. [20] YANG P, XU F H, LI J B, et al. The impact of oxygen impurity and La doping on thermodynamic properties of Si3N4 ceramic: a first-principle calculation approach[J]. Journal of the European Ceramic Society, 2020, 40(15): 5293-5297. [21] RAHMAN M H, CHOWDHURY E H, BIN SHAHADAT M R, et al. Engineered defects to modulate the phonon thermal conductivity of silicene: a nonequilibrium molecular dynamics study[J]. Computational Materials Science, 2021, 191: 110338. |