[1] 张楚汉.论岩石、混凝土离散-接触-断裂分析[J].岩石力学与工程学报,2008,27(2):217-235. ZHANG C H. Discrete-contact-fracture analysis of rock and concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 217-235 (in Chinese). [2] ROELFSTRA P E, SADOUKI H, WITTMANN F H. Le béton numérique[J]. Materials and Structures, 1985, 18(5): 327-335. [3] 刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂[J].清华大学学报(自然科学版),1996,36(1):84-89. LIU G T, WANG Z M. Numerical simulation study of fracture of concrete materials using random aggregate model[J]. Journal of Tsinghua University (Science and Technology), 1996, 36(1): 84-89 (in Chinese). [4] CHRISTENSEN R M, LO K H. Solutions for effective shear properties in three phase sphere and cylinder models[J]. Journal of the Mechanics and Physics of Solids, 1979, 27(4): 315-330. [5] NILSEN A U, MONTEIRO P J M. Concrete: a three phase material[J]. Cement and Concrete Research, 1993, 23(1): 147-151. [6] NEUBAUER C M, JENNINGS H M, GARBOCZI E J. A three-phase model of the elastic and shrinkage properties of mortar[J]. Advanced Cement Based Materials, 1996, 4(1): 6-20. [7] 姜雪光.基于渐进均匀化理论的复合材料性能预测与分析[D].哈尔滨:东北林业大学,2018:24-26. JIANG X G. The property prediction and analyzation of composites based on asymptotic homogenization theory[D]. Harbin: Northeast Forestry University, 2018: 24-26 (in Chinese). [8] BENSOUSSAN A, LIONS J L, PAPANICOLAOU G. Asymtopic structures[M]. Amsterdam: North Holland, 1978. [9] 唐欣薇,张楚汉.基于均匀化理论的混凝土宏细观力学特性研究[J].计算力学学报,2009,26(6):876-881. TANG X W, ZHANG C H. Study on concrete in macro-and meso-scale mechanical properties based on homogenization theory[J]. Chinese Journal of Computational Mechanics, 2009, 26(6): 876-881 (in Chinese). [10] 邓方茜,徐礼华,池 寅,等.基于均匀化理论的混杂纤维混凝土有效弹性模量计算[J].硅酸盐学报,2019,47(2):161-170. DENG F Q, XU L H, CHI Y, et al. Calculation of effective elastic modulus for hybrid fiber reinforced concrete based on homogenization theory[J]. Journal of the Chinese Ceramic Society, 2019, 47(2): 161-170 (in Chinese). [11] OUYANG X, SHI C J, WU Z M, et al. Experimental investigation and prediction of elastic modulus of ultra-high performance concrete (UHPC) based on its composition[J]. Cement and Concrete Research, 2020, 138: 106241. [12] WALRAVEN J C, REINHARDT H W. Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading[J]. Heron, 1991, 26(1A): 26-35. [13] TANG X W, ZHANG C H, SHI J J. A multiphase mesostructure mechanics approach to the study of the fracture-damage behavior of concrete[J]. Science in China Series E: Technological Sciences, 2008, 51(2): 8-24. [14] SUN X J, GAO Z, CAO P, et al. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete[J]. Construction and Building Materials, 2019, 202: 58-72. [15] XU W X, MA H F, JI S Y, et al. Analytical effective elastic properties of particulate composites with soft interfaces around anisotropic particles[J]. Composites Science and Technology, 2016, 129: 10-18. [16] ZOUAOUI R, MILED K, LIMAM O, et al. Analytical prediction of aggregates’ effects on the ITZ volume fraction and Young’s modulus of concrete[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(7): 976-993. [17] ZHANG N L, GUO X M, ZHU B B, et al. A mesoscale model based on Monte-Carlo method for concrete fracture behavior study[J]. Science China Technological Sciences, 2012, 55(12): 3278-3284. [18] ZHENG J J, LI C Q, ZHOU X Z. An analytical method for prediction of the elastic modulus of concrete[J]. Magazine of Concrete Research, 2006, 58(10): 665-673. |