[1] AVDAR A. Investigation of freeze-thaw effects on mechanical properties of fiber reinforced cement mortars[J]. Composites Part B: Engineering, 2014, 58: 463-472. [2] KOSIOR-KAZBERUK M, BERKOWSKI P. Surface scaling resistance of concrete subjected to freeze-thaw cycles and sustained load[J]. Procedia Engineering, 2017, 172: 513-520. [3] 张永存,李青宁.基于孔结构分析的混凝土抗冻融性研究[J].公路,2016,61(3):182-186. ZHANG Y C, LI Q N. Research on freeze-thaw resistance of concrete based on pore structure analysis[J]. Highway, 2016, 61(3): 182-186 (in Chinese). [4] 秦 泳,徐 彬,郑一峰.掺加硅藻土混凝土孔隙结构冻融破坏试验研究[J].路基工程,2020(5):43-48. QIN Y, XU B, ZHENG Y F. Experimental study on freezing and thawing failure test of diatomite doped concrete with pore structure[J]. Subgrade Engineering, 2020(5): 43-48 (in Chinese). [5] 陈 虎.矿物复掺C60机制砂混凝土耐久性能研究[J].中外公路,2015,35(4):300-303. CHEN H. Study on the durability performance of mineral compounded C60 mechanism sand concrete[J]. Journal of China & Foreign Highway, 2015, 35(4): 300-303 (in Chinese). [6] 赵燕茹,刘芳芳,王 磊,等.单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J].材料导报,2020,34(12):12064-12069. ZHAO Y R, LIU F F, WANG L, et al. Modeling of the compressive strength of basalt fiber concrete based on pore structure under single-side freeze-thaw condition[J]. Materials Reports, 2020, 34(12): 12064-12069 (in Chinese). [7] 吴倩云,马芹永,王 莹.冻融循环作用下玄武岩纤维-矿渣粉-粉煤灰混凝土压拉强度试验与细观结构[J].复合材料学报,2021,38(3):953-965. WU Q Y, MA Q Y, WANG Y. Compression-tensile tests and meso-structure of basalt fiber-slag powder-fly ash concrete under freeze-thaw cycles[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 953-965 (in Chinese). [8] 吴倩云,马芹永.冻融循环作用下BSFC的抗冻性及损伤模型[J].建筑材料学报,2021,24(6):1169-1178. WU Q Y, MA Q Y. Frost resistance and damage model of BSFC under freeze-thaw cycles[J]. Journal of Building Materials, 2021, 24(6): 1169-1178 (in Chinese). [9] AMORIM N S J, SILVA G A O, RIBEIRO D V. Effects of the incorporation of recycled aggregate in the durability of the concrete submitted to freeze-thaw cycles[J]. Construction and Building Materials, 2018, 161: 723-730. [10] GU C P, YE G, SUN W. A review of the chloride transport properties of cracked concrete: experiments and simulations[J]. Journal of Zhejiang University-SCIENCE A, 2015, 16(2): 81-92. [11] 刘海峰,马映昌,张润奇,等.冻融环境下沙漠砂对混凝土轴心受压力学性能的影响[J].哈尔滨工业大学学报,2021,53(3):101-109+117. LIU H F, MA Y C, ZHANG R Q, et al. Influence of desert sand on axial compression behavior of concrete under freezing and thawing environment[J]. Journal of Harbin Institute of Technology, 2021, 53(3): 101-109+117 (in Chinese). [12] 郭耀华,丁红岩,张浦阳,等.基于压汞试验的SAP混凝土孔结构特征[J].建筑材料学报,2018,21(1):138-142. GUO Y H, DING H Y, ZHANG P Y, et al. Pore structure characteristics of SAP concrete based on mercury intrusion test[J]. Journal of Building Materials, 2018, 21(1): 138-142 (in Chinese). [13] 邢秉元,程鹏宇,唐继朋,等.冻融循环作用下饱水砂浆孔结构的演变规律[J].硅酸盐学报,2021,49(2):331-339. XING B Y, CHENG P Y, TANG J P, et al. Pore structure evolution of water-saturated mortar under freeze-thaw cycles[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 331-339 (in Chinese). [14] 高延红,邵鑫杰,章玉容,等.自然潮差环境粉煤灰混凝土渗透性能的相关性[J].水力发电学报,2021,40(2):214-222. GAO Y H, SHAO X J, ZHANG Y R, et al. Permeability dependency of fly ash concrete in natural tidal environment[J]. Journal of Hydroelectric Engineering, 2021, 40(2): 214-222 (in Chinese). [15] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999. WU Z W, LIAN H Z. High performance concrete[M]. Beijing: China Railway Press, 1999 (in Chinese). [16] 刘思峰,党耀国,方志耕.灰色系统理论及其应用[M].5版.北京:科学出版社,2010. LIU S F, DANG Y G, FANG Z G. Gray system theory and its applications[M]. 5th ed. Beijing: Science Press, 2010 (in Chinese). |