硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (5): 1483-1493.
• 水泥混凝土 • 下一篇
关国浩1, 王学志1, 贺晶晶2
收稿日期:
2022-01-17
修回日期:
2022-02-24
出版日期:
2022-05-15
发布日期:
2022-06-01
通讯作者:
王学志,博士,教授。E-mail:myemailwxz@163.com
作者简介:
关国浩(1995—),男,硕士研究生。主要从事海水海砂混凝土方面的研究。E-mail:15090254086@163.com
基金资助:
GUAN Guohao1, WANG Xuezhi1, HE Jingjing2
Received:
2022-01-17
Revised:
2022-02-24
Online:
2022-05-15
Published:
2022-06-01
摘要: 利用海水海砂替代淡水河砂制备混凝土不但能缓解土木工程行业对资源的消耗,而且对于沿海城市及远海岛礁建设而言,就地取材节约了大量的运输成本和时间成本,因此,对于海水海砂资源化利用的研究变得尤为重要。以海水海砂混凝土为研究对象,通过对比国内外学者对海水海砂特性的研究,综合分析了海水海砂混凝土力学性能以及干湿循环和冻融循环下耐久性能以及海水海砂混凝土与纤维增强聚合物(FRP)筋组合结构粘结性能的发展规律。最后对目前海水海砂混凝土研究成果进行了总结,并对未来的研究内容提出了建议。
中图分类号:
关国浩, 王学志, 贺晶晶. 海水海砂混凝土研究进展[J]. 硅酸盐通报, 2022, 41(5): 1483-1493.
GUAN Guohao, WANG Xuezhi, HE Jingjing. Research Progress of Seawater Sea-Sand Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(5): 1483-1493.
[1] 周继凯,何 旭,王泽宇,等.海水海砂混凝土与潜在危害研究进展[J].科学技术与工程,2018,18(24):179-187. ZHOU J K, HE X, WANG Z Y, et al. Research progress on seawater and sea sand concrete and its potential hazards[J]. Science Technology and Engineering, 2018, 18(24): 179-187 (in Chinese). [2] GUO M H, HU B, XING F, et al. Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis[J]. Construction and Building Materials, 2020, 234: 117339. [3] 李晓禹.海砂珊瑚混凝土配合比设计与粘结滑移性能研究[D].沈阳:沈阳建筑大学,2020. LI X Y. Mix design and bond-slip performance of sea sand coral concrete[D]. Shenyang: Shenyang Jianzhu University, 2020 (in Chinese). [4] 李师财,于 泳,金祖权.海水海砂混凝土力学性能与耐久性研究综述[J].硅酸盐通报,2020,39(12):3743-3752. LI S C, YU Y, JIN Z Q. Review on mechanical properties and durability of seawater and sea-sand concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3743-3752 (in Chinese). [5] KUNTHER W, LOTHENBACH B, SKIBSTED J. Influence of the Ca/Si ratio of the C-S-H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure[J]. Cement and Concrete Research, 2015, 69: 37-49. [6] DIAS W P S, SENEVIRATNE G A P S N, NANAYAKKARA S M A. Offshore sand for reinforced concrete[J]. Construction and Building Materials, 2008, 22(7): 1377-1384. [7] 景镇子,成铭钊,郦 怡,等.基于水热固化技术的海砂利用研究[J].建筑材料学报,2016,19(4):613-618. JING Z Z, CHENG M Z, LI Y, et al. Utilization of sea sand based on a hydrothermal solidification technology[J]. Journal of Building Materials, 2016, 19(4): 613-618 (in Chinese). [8] 洪乃丰.海砂对钢筋混凝土的腐蚀与对策[J].混凝土,2002(8):12-14. HONG N F. Sea sand corrosion to reinforcing concrete and countermeasure[J]. Concrete, 2002(8): 12-14 (in Chinese). [9] HASANZADE-INALLU A, ZARFAM P, NIKOO M. Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP[J]. Journal of Central South University, 2019, 26(11): 3156-3174. [10] GE W J, ASHOUR A F, CAO D F, et al. Experimental study on flexural behavior of ECC-concrete composite beams reinforced with FRP bars[J]. Composite Structures, 2019, 208: 454-465. [11] WANG J J, XIE J H, WANG Y L, et al. Rheological properties, compressive strength, hydration products and microstructure of seawater-mixed cement pastes[J]. Cement and Concrete Composites, 2020, 114: 103770. [12] 童 斌,蒋 婷,宋旭艳.海砂及海砂混凝土研究进展综述[J].科技创新导报,2019,16(21):38-40+42. TONG B, JIANG T, SONG X Y. Review of research progress on sea sand and sea sand concrete[J]. Science and Technology Innovation Herald, 2019, 16(21): 38-40+42 (in Chinese). [13] YI J, ZHE L J, WU S, et al. Study on the properties of sea sand concrete with fly ash[J]. Advanced Materials Research, 2014, 1065/1066/1067/1068/1069: 1854-1857. [14] ZHANG Z H, SANG Z Q, ZHANG L Y, et al. Experimental research on durability of concrete made by seawater and sea-sand[J]. Advanced Materials Research, 2013, 641/642: 385-388. [15] ANN K Y, SONG H W. Chloride threshold level for corrosion of steel in concrete[J]. Corrosion Science, 2007, 49(11): 4113-4133. [16] 宋旭艳,姜正平,韩静云,等.海砂混凝土中钢筋锈蚀情况研究[J].混凝土与水泥制品,2019(9):19-23. SONG X Y, JIANG Z P, HAN J Y, et al. Study on corrosion of steel bars in sea sand concrete[J]. China Concrete and Cement Products, 2019(9): 19-23 (in Chinese). [17] MARYOTO A. Resistance of concrete with calcium stearate due to chloride attack tested by accelerated corrosion[J]. Procedia Engineering, 2017, 171: 511-516. [18] WANG G, WU Q, LI X Z, et al. Microscopic analysis of steel corrosion products in seawater and sea-sand concrete[J]. Materials (Basel, Switzerland), 2019, 12(20): 3330. [19] 韦建刚,陈 荣,黄 伟,等.海砂超高性能混凝土试验[J].重庆大学学报,2021:1-10. WEI J G, CHEN R, HUANG W, et al. Experimental study on sea-sand ultra-high performance concrete[J]. Journal of Chongqing University, 2021: 1-10 (in Chinses). [20] 冯 鹏,王 杰,张 枭,等.FRP与海砂混凝土组合应用的发展与创新[J].玻璃钢/复合材料,2014(12):13-18. FENG P, WANG J, ZHANG X, et al. Development and innovation on combining FRP and sea sand concrete for structures[J]. Fiber Reinforced Plastics/Composites, 2014(12): 13-18 (in Chinese). [21] 苏岳威,张佳康,吴 蓬,等.海砂对混凝土耐久性能的影响研究综述[J].混凝土,2021(2):63-67. SU Y W, ZHANG J K, WU P, et al. Review on the influence of sea sand on the durability of concrete[J]. Concrete, 2021(2): 63-67 (in Chinese). [22] VEIGA K K, GASTALDINI A L G. Sulfate attack on a white Portland cement with activated slag[J]. Construction and Building Materials, 2012, 34: 494-503. [23] GENG J, EASTERBROOK D, LI L Y, et al. The stability of bound chlorides in cement paste with sulfate attack[J]. Cement and Concrete Research, 2015, 68: 211-222. [24] 傅建彬.海砂建筑材料资源化几个关键技术的研究[D].武汉:武汉大学,2005. FU J B. Several key techniques about construction material resourcialization of sea sand[D]. Wuhan: Wuhan University, 2005 (in Chinese). [25] 宁 博,欧阳东,温喜廉.利用海砂制备高性能混凝土试验研究[J].混凝土,2012(1):88-90+93. NING B, OUYANG D, WEN X L. Experimental study on sea sand high-performance concrete[J]. Concrete, 2012(1): 88-90+93 (in Chinese). [26] 黄一杰,吴纪达,肖建庄,等.钢管海砂再生混凝土轴压性能试验与分析[J].建筑材料学报,2018,21(1):85-90+130. HUANG Y J, WU J D, XIAO J Z, et al. Experimental study and analysis on axial compressive behavior of sea-sand recycled concrete filled steel tube[J]. Journal of Building Materials, 2018, 21(1): 85-90+130 (in Chinese). [27] 刘 伟,谢友均,董必钦,等.海砂特性及海砂混凝土力学性能的研究[J].硅酸盐通报,2014,33(1):15-22. LIU W, XIE Y J, DONG B Q, et al. Study on characteristics of dredged marine sand and the mechanical properties of concrete made with dredged marine sand[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(1): 15-22 (in Chinese). [28] LIMEIRA J, ETXEBERRIA M, AGULLÓ L, et al. Mechanical and durability properties of concrete made with dredged marine sand[J]. Construction and Building Materials, 2011, 25(11): 4165-4174. [29] LIU J, FAN X, LIU J, et al. Investigation on mechanical and micro properties of concrete incorporating seawater and sea sand in carbonized environment[J]. Construction and Building Materials, 2021, 307: 124986. [30] 崔 明.海砂海水混凝土力学性能及其与FRP筋组合梁受弯性能研究[D].哈尔滨:哈尔滨工程大学,2015. CUI M. Mechanical performance of marine sand and seawater concrete and bending properties of FRP bars-marine sand and seawater concrete beams[D]. Harbin: Harbin Engineering University, 2015 (in Chinese). [31] 黄 亮,谢建和,陆中宇.海水海砂混凝土研究现状与应用前景[J].混凝土,2020(9):155-160. HUANG L, XIE J H, LU Z Y. Research progress and prospects on seawater sea-sand concrete[J]. Concrete, 2020(9): 155-160 (in Chinese). [32] 张 伟,叶法平.沿海城市海砂混凝土问题及对策[J].技术与市场,2013,20(7):104+106. ZHANG W, YE F P. Sea sand concrete problems and countermeasures in coastal cities[J]. Technology and Market, 2013, 20(7): 104+106 (in Chinese).[33] 李彪宗.海水海砂特性及其水泥基材料力学性能研究进展[J].中国水运(下半月),2021,21(5):134-136. LI B Z. Progress of research on the properties of seawater marine sand and its mechanical properties of cementitious materials[J]. China Water Transport, 2021, 21(5): 134-136 (in Chinese). [34] YEHIA S, TUAN C Y. Conductive concrete overlay for bridge deck deicing: mixture proportioning, optimization, and properties[J]. ACI Materials Journal, 2000, 97(2): 172-181. [35] GOPALAKRISHNAN K, CEYLAN H, KIM S, et al. Electrically conductive mortar characterization for self-heating airfield concrete pavement mix design[J]. International Journal of Pavement Research and Technology, 2015, 8(5): 315-324. [36] ISLAM M M, ISLAM M S, AL-AMIN M, et al. Suitability of sea water on curing and compressive strength of structural concrete[J]. Journal of Civil Engineering (IEB), 2012, 40(1): 37-45. [37] 陈宗平,周 济,陈宇良,等.珊瑚粗骨料海水混凝土力学性能试验研究[J].应用力学学报,2020,37(5):1999-2006+2319. CHEN Z P, ZHOU J, CHEN Y L, et al. Experimental study on mechanical properties of coral coarse aggregate seawater concrete[J]. Chinese Journal of Applied Mechanics, 2020, 37(5): 1999-2006+2319 (in Chinese). [38] 陈宗平,张亚旗,姚如胜,等.海砂混凝土单轴受压应力-应变全曲线试验研究[J].硅酸盐通报,2019,38(12):3934-3940+3945. CHEN Z P, ZHANG Y Q, YAO R S, et al. Experimental study on complete stress-strain curve of sea sand concrete behavior under uniaxial loading[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3934-3940+3945 (in Chinese). [39] XIAO J Z, QIANG C B, NANNI A, et al. Use of sea-sand and seawater in concrete construction: current status and future opportunities[J]. Construction and Building Materials, 2017, 155: 1101-1111. [40] 赵文成,潭进财,杨景鼎.海砂用于混凝土构造物耐久性研究及使用管理[J].东南大学学报(自然科学版),2006,36(s2):160-166. ZHAO W C, TAN J C, YANG J D. Effect of sea sand on concrete durability and its management[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(s2): 160-166 (in Chinese). [41] 秦 斌.海水海砂混凝土基本力学性能研究[J].混凝土,2019(2):90-91. QIN B. Basic mechanical properties of seawater and sea sand concrete[J]. Concrete, 2019(2): 90-91 (in Chinese). [42] KARTHIKEYAN M, NAGARAJAN V. Feasibility study on utilization of marine sand in concrete for sustainable development[J]. Indian Journal of Marine Sciences, 2016, 45(2): 313-318. [43] SHI Z G, SHUI Z H, LI Q, et al. Combined effect of metakaolin and sea water on performance and microstructures of concrete[J]. Construction and Building Materials, 2015, 74: 57-64. [44] LI Q, GENG H N, HUANG Y, et al. Chloride resistance of concrete with metakaolin addition and seawater mixing: a comparative study[J]. Construction and Building Materials, 2015, 101: 184-192. [45] LI H, FARZADNIA N, SHI C J. The role of seawater in interaction of slag and silica fume with cement in low water-to-binder ratio pastes at the early age of hydration[J]. Construction and Building Materials, 2018, 185: 508-518. [46] 刘加平,刘玉静,石 亮,等.氯盐-硫酸盐对水泥基材料的复合侵蚀破坏[J].建筑材料学报,2016,19(6):993-997. LIU J P, LIU Y J, SHI L, et al. Combined attack of chloride-sulfate on cement-based materials[J]. Journal of Building Materials, 2016, 19(6): 993-997 (in Chinese). [47] MAES M, DE BELIE N. Resistance of concrete and mortar against combined attack of chloride and sodium sulphate[J]. Cement and Concrete Composites, 2014, 53: 59-72. [48] MAVROPOULOU N, KATSIOTIS N, GIANNAKOPOULOS J, et al. Durability evaluation of cement exposed to combined action of chloride and sulphate ions at elevated temperature: the role of limestone filler[J]. Construction and Building Materials, 2016, 124: 558-565. [49] 肖建庄,张 鹏,张青天,等.海水海砂再生混凝土的基本力学性能[J].建筑科学与工程学报,2018,35(2):16-22. XIAO J Z, ZHANG P, ZHANG Q T, et al. Basic mechanical properties of seawater sea-sand recycled concrete[J]. Journal of Architecture and Civil Engineering, 2018, 35(2): 16-22 (in Chinese). [50] MA L J, LI Z, LIU J G, et al. Mechanical properties of coral concrete subjected to uniaxial dynamic compression[J]. Construction and Building Materials, 2019, 199: 244-255. [51] 杨成林,徐 迎,洪 建,等.强动载作用下海水海砂混凝土应用研究进展[J].硅酸盐通报,2021,40(2):415-422. YANG C L, XU Y, HONG J, et al. Research progress on application of sea sand concrete under strong dynamic load[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(2): 415-422 (in Chinese). [52] 徐金俊,赵旭凌,唐月月,等.动态响应下海水海洋骨料混凝土受压应力-应变本构关系研究[J].振动工程学报,2022(1):1-10. XU J J, ZHAO X L, TANG Y Y, et al. Compressive stress-strain constitutive relationship of seawater and marine aggregates fabricated concrete under dynamic response[J]. Journal of Vibration Engineering, 2022(1): 1-10 (in Chinses). [53] 岳承军,余红发,麻海燕,等.全珊瑚海水混凝土冲击压缩性能试验研究与数值模拟[J].建筑材料学报,2021,24(2):283-290. YUE C J, YU H F, MA H Y, et al. Experimental study and simulation of impact compression of coral aggregate seawater concrete[J]. Journal of Building Materials, 2021, 24(2): 283-290 (in Chinese). [54] 吴家文,马林建,孔新立,等.冲击荷载下全珊瑚混凝土动力特性[J].建筑材料学报,2020,23(3):581-588. WU J W, MA L J, KONG X L, et al. Dynamic characteristics of coral concrete under impact load[J]. Journal of Building Materials, 2020, 23(3): 581-588 (in Chinese). [55] LIU B, ZHOU J K, WEN X Y, et al. Experimental investigation on the impact resistance of carbon fibers reinforced coral concrete[J]. Materials (Basel, Switzerland), 2019, 12(23): 4000. [56] TANG J W, CHENG H, ZHANG Q B, et al. Development of properties and microstructure of concrete with coral reef sand under sulphate attack and drying-wetting cycles[J]. Construction and Building Materials, 2018, 165: 647-654. [57] ZHOU J K, HE X. Experimental study on internal and external salt attack from seawater and sea-sand to mortars[J]. KSCE Journal of Civil Engineering, 2021, 25(8): 2951-2961. [58] 陈 振,沈诗鸣,陈星宇,等.海水海砂高性能混凝土的制备及耐久性研究[J].粉煤灰综合利用,2018,31(6):57-61. CHEN Z, SHEN S M, CHEN X Y, et al. Research on the preparation and durability of brine marine sand high performence concrete[J]. Fly Ash Comprehensive Utilization, 2018, 31(6): 57-61 (in Chinese). [59] 曹园章,郭丽萍,臧文洁,等.氯盐和硫酸盐交互作用下水泥基材料的破坏机理综述[J].材料导报,2018,32(23):4142-4149. CAO Y Z, GUO L P, ZANG W J, et al. Failure mechanism of cement-based materials subjected to the interaction between chloride and sulfate: a review[J]. Materials Review, 2018, 32(23): 4142-4149 (in Chinese). [60] RAO M J, DONG Y, YANG H Q, et al. Influence of carbonation and freeze-thaw on macro-properties of concrete[J]. IOP Conference Series: Materials Science and Engineering, 2017, 164: 012005. [61] LIU Y Z, CHEN Y F, WANG W J, et al. Bond performance of thermal insulation concrete under freeze-thaw cycles[J]. Construction and Building Materials, 2016, 104: 116-125. [62] 曹卫群,苏 卿,赵铁军,等.海砂混凝土耐久性试验研究[C]//第19届全国结构工程学术会议论文集(第Ⅱ册),2010:6. CAO W Q, SU Q, ZHAO T J, et al. Experiments research on the durability of concrete made of sea sand[C]//Proceedings of the 19th National Academic Conference on Structural Engineering (Volume Ⅱ), 2010: 6 (in Chinses). [63] LI T Y, LIU X Y, ZHANG Y M, et al. Preparation of sea water sea sand high performance concrete (SHPC) and serving performance study in marine environment[J]. Construction and Building Materials, 2020, 254: 119114. [64] ISLAM M M, ALAM M T, ISLAM M S. Effect of fly ash on freeze-thaw durability of concrete in marine environment[J]. Australian Journal of Structural Engineering, 2018, 19(2): 146-161. [65] 田 威,李小山,王 峰.冻融循环与硫酸盐溶液耦合作用下混凝土劣化机理试验研究[J].硅酸盐通报,2019,38(3):702-710. TIAN W, LI X S, WANG F. Experimental study on deterioration mechanism of concrete under freeze-thaw cycles coupled with sulfate solution[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 702-710 (in Chinese). [66] DONG Z Q, WU G, XU Y Q. Bond and flexural behavior of sea sand concrete members reinforced with hybrid steel-composite bars presubjected to wet-dry cycles[J]. Journal of Composites for Construction, 2017, 21(2): 04016095. [67] XIONG Z, ZENG Y, LI L G, et al. Experimental study on the effects of glass fibres and expansive agent on the bond behaviour of glass/basalt FRP bars in seawater sea-sand concrete[J]. Construction and Building Materials, 2021, 274: 122100. [68] LI L J, LU J K, FANG S, et al. Flexural study of concrete beams with basalt fibre polymer bars[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2018, 171(7): 505-516. [69] 王 磊,吴 翔,曾 榕,等.CFRP筋与珊瑚混凝土的黏结性能试验研究[J].中国农村水利水电,2016(7):127-131. WANG L, WU X, ZENG R, et al. The experimental research on bond performance between CFRP bars and the coral concrete[J]. China Rural Water and Hydropower, 2016(7): 127-131 (in Chinese). [70] NANNI A. Guide for the design and construction of concrete reinforced with FRP bars (ACI 440.1R-03)[C]//Structures Congress 2005. April 20-24, 2005, New York, USA. Reston, VA, USA: American Society of Civil Engineers, 2005: 1-6. [71] CHEUNG M S. Design and construction of building components with fibre reinforced polymers: a new canadian standard[C]//FRP Composites in Civil Engineering. Proceedings of the International Conference on FRP Composites in Civil Engineering Hong Kong Institution of Engineers, Hong Kong Institution of Steel Construction. 2001, 1: 137-145. [72] TENG J G, YU T, DAI J G, et al. Chen, FRP composites in new construction: current status and opportunities[C]//Proceedings of the 7th National Conference on FRP Composition, Hangzhou, 2011. [73] WU C, MENG B C, CHENG X F, et al. Bond behavior between BFRP rebar and seawater sea sand concrete[J]. Advances in Civil Engineering, 2020, 2020: 8850809. [74] SU X, YIN S P, ZHAO Y D, et al. Experimental study on bond behavior between BFRP bars and seawater sea-sand concrete[J]. Journal of Central South University, 2021, 28(7): 2193-2205. [75] 肖建庄,廖清香,张青天,等.海水海砂再生混凝土与玻璃纤维增强塑料筋黏结性能[J].同济大学学报(自然科学版),2018,46(7):884-890+971. XIAO J Z, LIAO Q X, ZHANG Q T, et al. Bond behavior between seawater sea-sand recycled aggregate concrete and glass-fiber-reinforced polymer bars[J]. Journal of Tongji University (Natural Science), 2018, 46(7): 884-890+971 (in Chinese). [76] HUA Y T, YIN S P, WANG Z H. Analysis of influence factors on interfacial bond between BFRP bars and seawater sea-sand concrete[J]. Journal of Reinforced Plastics and Composites, 2021, 40(1/2): 16-28. [77] HUANG H, YUAN Y J, ZHANG W, et al. Bond properties between GFRP bars and hybrid fiber-reinforced concrete containing three types of artificial fibers[J]. Construction and Building Materials, 2020, 250: 118857. |
[1] | 刘士达, 李宗利, 童涛涛, 李云波, 肖帅鹏. 湿度对水化硅酸钙力学性能影响的分子动力学模拟[J]. 硅酸盐通报, 2022, 41(5): 1554-1561. |
[2] | 储安健, 李英明, 黄顺杰, 陈莞尔. 纳米SiO2和聚丙烯纤维对煤矸石二灰混合料改性试验研究[J]. 硅酸盐通报, 2022, 41(5): 1669-1676. |
[3] | 袁正平, 耿新洋, 王富林. 碱激发冶炼铅渣-偏高岭土复合胶凝材料的制备及水化机理[J]. 硅酸盐通报, 2022, 41(5): 1724-1733. |
[4] | 宗景美, 张雪兰, 韩猛. 废弃陶瓷骨料混凝土的力学性能和三维预测模型研究[J]. 硅酸盐通报, 2022, 41(5): 1774-1781. |
[5] | 葛梦龙, 叶倩倩, 康海娇, 李建章. 外加剂改性氯氧镁水泥研究进展[J]. 硅酸盐通报, 2022, 41(4): 1202-1210. |
[6] | 陈伟, 盛明泉, 许澳, 梁越. 高温及升温速率对砂浆气体渗透性与孔隙率的影响[J]. 硅酸盐通报, 2022, 41(4): 1256-1263. |
[7] | 张晨明, 侯东帅, 张洪智, 张伟. 混凝土单轴受拉断裂行为的近场动力学模拟[J]. 硅酸盐通报, 2022, 41(4): 1276-1284. |
[8] | 姜常玺, 周立娟, 庄英华, 廖圣俊, 王建军. 三元复合烧结助剂Er2O3-Mg2Si-Yb2O3对氮化硅陶瓷性能的影响[J]. 硅酸盐通报, 2022, 41(4): 1423-1432. |
[9] | 李一凡, 王社良, 徐晋, 白娇娇, 全晓旖, 徐卫锋. 硫酸盐-冻融循环下自感应水泥砂浆的耐久及压敏性能[J]. 硅酸盐通报, 2022, 41(3): 777-786. |
[10] | 王玉华, 孙拴虎. 纳米SiO2改性纤维增强普通硅酸盐水泥-硫铝酸盐水泥复合材料早期性能及微观结构[J]. 硅酸盐通报, 2022, 41(3): 795-801. |
[11] | 王阮彬, 程丽乾, 逯景桐, 金若其, 贺铭哲, 闫树浩, 蒋大梅, 邓世捷, 褚祥诚. 碳纤维增强BT-HA复合材料的制备与性能[J]. 硅酸盐通报, 2022, 41(3): 994-1001. |
[12] | 陈新, 陈士堃, 闫东明, 刘毅, 王铁龙. 磷酸镁涂层高温后力学性能研究[J]. 硅酸盐通报, 2022, 41(3): 1031-1038. |
[13] | 杨智敏, 曾国鹏, 郭寅川, 肖葳, 毛松纯, 牟戈. 离析对湿热地区沥青混合料长期水稳定性的影响[J]. 硅酸盐通报, 2022, 41(3): 1094-1101. |
[14] | 牟长江, 程凯, 刘瑞, 贾恩达, 孙浩, 牛腾, 卢晓磊, 杜鹏, 叶正茂. 半柔性路面用水泥基灌浆材料的矿物掺合料协同优化研究[J]. 硅酸盐通报, 2022, 41(3): 1102-1112. |
[15] | 曾昊, 谭幸淼, 梁超锋. 花岗岩废砂粉对水泥基材料性能影响的研究进展[J]. 硅酸盐通报, 2022, 41(2): 390-400. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||