硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (4): 1404-1415.
陈波1, 韦中华2, 李镔2, 王子诚1, 王腾飞1
收稿日期:
2021-07-24
修回日期:
2021-09-04
出版日期:
2022-04-15
发布日期:
2022-04-27
通讯作者:
韦中华,教授级高工。E-mail:rainbow520521@163.com
作者简介:
陈 波(1976—),男,教授级高工。主要从事高性能氮化硅陶瓷性能研究及产业化应用。E-mail:35887370@163.com
CHEN Bo1, WEI Zhonghua2, LI Bin2, WANG Zicheng1, WANG Tengfei1
Received:
2021-07-24
Revised:
2021-09-04
Online:
2022-04-15
Published:
2022-04-27
摘要: 氮化硅陶瓷不仅具有较高的力学性能还具有良好的透波性能、导热性能以及生物相容性能,是公认的综合性能最优的陶瓷材料。作为轴承球的致密氮化硅陶瓷广泛应用在机械领域;作为透波材料的多孔氮化硅陶瓷广泛应用在航空航天领域;随着对氮化硅陶瓷材料的深入研究,其在导热性和生物相容性方面的优异特性逐渐被科研工作者认识并得到开发和应用。本文详细阐述了氮化硅粉体的制备方法,并综述了氮化硅陶瓷作为结构陶瓷在机械领域和航空航天领域的研究进展,此外还介绍了其作为功能陶瓷在半导体领域、生物制药领域的研究和应用现状,最后对其未来发展进行了展望。
中图分类号:
陈波, 韦中华, 李镔, 王子诚, 王腾飞. 氮化硅陶瓷在四大领域的研究及应用进展[J]. 硅酸盐通报, 2022, 41(4): 1404-1415.
CHEN Bo, WEI Zhonghua, LI Bin, WANG Zicheng, WANG Tengfei. Research and Application Progress of Silicon Nitride Ceramics in Four Major Fields[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(4): 1404-1415.
[1] COLLINS J F, GERBY R W. New refractory uses for silicon nitride reported[J]. JOM, 1955, 7(5): 612-615. [2] 郭景坤.中国先进陶瓷研究及其展望[J].材料研究学报,1997,11(6):594-600. GUO J K. The research on advanced ceramics and its prospects in China[J]. Chinese Journal of Material Research, 1997, 11(6): 594-600 (in Chinese). [3] FÜNFSCHILLING S, FETT T, HOFFMANN M J, et al. Mechanisms of toughening in silicon nitrides: the roles of crack bridging and microstructure[J]. Acta Materialia, 2011, 59(10): 3978-3989. [4] 张伟儒.高比强多孔Si3N4陶瓷透波材料的研究[J].中国陶瓷工业,2020,27(2):11-14. ZHANG W R. Study on Si3N4 microwave-transparent ceramic materials with high porosity[J]. China Ceramic Industry, 2020, 27(2): 11-14 (in Chinese). [5] 郑 彧,张伟儒,彭珍珍,等.高纯氮化硅粉合成研究进展[J].硅酸盐通报,2015,34(s1):344-347. ZHENG Y, ZHANG W R, PENG Z Z, et al. Research progress of the synthesis of high purity silicon nitride[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(s1): 344-347 (in Chinese). [6] 吴浩成,盛绪敏.影响硅粉氮化相组成的若干因素[J].南京工业大学学报(自然科学版),1982,4(2):1-7. WU H C, SHENG X M. Several factors affecting the nitriding phase composition of silicon powder[J]. Journal of Nanjing University of Technology (Natural Science Edition), 1982, 4(2): 1-7 (in Chinese). [7] 吴浩成,盛绪敏.加速硅粉氮化的有效途径[J].硅酸盐通报,1983,2(6):1-8. WU H C, SHENG X M. Effective way to accelerate silicon powder nitriding[J]. Bulletin of the Chinese Cerrmic Society, 1983, 2(6): 1-8 (in Chinese). [8] 吴浩成.在流动NH3中催化剂对硅粉氮化的影响[J].南京工业大学学报(自然科学版),1985,7(1):56-62. WU H C. Effect of catalyst on nitriding of silicon powder in flowing NH3[J]. Journal of Nanjing University of Technology (Natural Science Edition), 1985, 7(1): 56-62 (in Chinese). [9] PARK Y J, PARK M J, KIM J M, et al. Sintered reaction-bonded silicon nitrides with high thermal conductivity: the effect of the starting Si powder and Si3N4 diluents[J]. Journal of the European Ceramic Society, 2014, 34(5): 1105-1113. [10] 徐晨辉,张 宁,赵介南,等.氮化硅陶瓷粉体的制备研究进展[J].粉末冶金工业,2019,29(4):82-86. XU C H, ZHANG N, ZHAO J N, et al. Research progress in preparation of silicon nitride ceramic powder[J]. Powder Metallurgy Industry, 2019, 29(4): 82-86 (in Chinese). [11] ZIEGENBALG G, BREUEL U, EBRECHT E, et al. Synthesis of α-silicon nitride powder by gas-phase ammonolysis of CH3SiCl3[J]. Journal of the European Ceramic Society, 2001, 21(7): 947-958. [12] 毕玉惠,陈 斐,李 君,等.Si(NH)2热分解法制备Si3N4晶须的影响因素[J].武汉理工大学学报,2007,29(2):8-11. BI Y H, CHEN F, LI J, et al. Influence factors analysis for fabrication of silicon nitride whisker by thermal decomposition of Si(NH)2[J]. Journal of Wuhan University of Technology, 2007, 29(2): 8-11 (in Chinese). [13] 毕玉惠,张培志,于政波.Si(NH)2热分解法制备高纯超细Si3N4粉末的研究[J].硅酸盐通报,1989,8(6):59-63. BI Y H, ZHANG P Z, YU Z B. Study on preparation of high purity and ultrafine Si3N4 Powder by Si(NH)2 thermal decomposition method [J]. Bulletin of the Chinese Cerrmic Society, 1989, 8(6): 59-63 (in Chinese). [14] 于政波,毕玉惠,张培志.硅亚胺分解法制备Si3N4晶须[J].陶瓷,1990(1):10-12. YU Z B, BI Y H, ZHANG P Z. Preparation of Si3N4 whiskers by silimide decomposition method[J]. Ceramics, 1990(1): 10-12 (in Chinese). [15] 王正军,刘莲香.自蔓燃高温合成工艺参数对制备氮化硅粉体的影响[J].中国粉体技术,2008,14(4):1-3. WANG Z J, LIU L X. Effect of self-propagating high temperature synthesis processing parameters on preparation of silicon nitride powder[J]. China Powder Science and Technology, 2008, 14(4): 1-3 (in Chinese). [16] 乔瑞庆,汪方文.自蔓延制备氮化硅粉体的生长机理[J].沈阳工业大学学报,2009,31(2):186-190. QIAO R Q, WANG F W. Growth mechanism of Si3N4 powder prepared by self-propagating high-temperature synthesis[J]. Journal of Shenyang University of Technology, 2009, 31(2): 186-190 (in Chinese). [17] BERMUDO J, OSENDI M I. Study of AlN and Si3N4 powders synthesized by SHS reactions[J]. Ceramics International, 1999, 25(7): 607-612. [18] JIANG Y, WU L E, WANG P L, et al. Pretreatment and sintering of Si3N4 powder synthesized by the high-temperature self-propagation method[J]. Materials Research Bulletin, 2009, 44(1): 21-24. [19] 朱宇璇,智 强,王 波,等.α-Si3N4粉体原料对多孔氮化硅陶瓷微观组织和力学性能的影响[J].硅酸盐学报,2019,47(9):1254-1260. ZHU Y X, ZHI Q, WANG B, et al. Effects of α-Si3N4 powders on microstructure and mechanical property of porous silicon nitride ceramics[J]. Journal of the Chinese Ceramic Society, 2019, 47(9): 1254-1260 (in Chinese). [20] PATTABHIRAMAN S, LEVESQUE G, KIM N H, et al. Uncertainty analysis for rolling contact fatigue failure probability of silicon nitride ball bearings[J]. International Journal of Solids and Structures, 2010, 47(18/19): 2543-2553. [21] 于政波,侯伟华.Si3N4陶瓷气氛压力烧结(GPS)技术[J].现代技术陶瓷,1995,16(4):45-49. YU Z B, HOU W H. A new sintering process of Si3N4 ceramics—gas pressure sintering (GPS)[J]. Advanced Ceramics, 1995, 16(4): 45-49 (in Chinese). [22] 李 婷.谈陶瓷轴承的应用及市场前景[J].现代技术陶瓷,2010,31(3):44-50. LI T. Ceramic bearing on the application and market prospects[J]. Advanced Ceramics, 2010, 31(3): 44-50 (in Chinese). [23] 张宝林,庄汉锐,李文兰.混合型氮化硅陶瓷轴承的新进展[J].轴承,2000(4):44-45. ZHANG B L, ZHUANG H R, LI W L. New development of hybrid silicon nitride ceramic bearings[J]. Bearing, 2000(4): 44-45 (in Chinese). [24] 饶水林.航空发动机用氮化硅陶瓷轴承技术研究现状[J].中国陶瓷工业,2020,27(3):35-38. RAO S L. Research status of silicon nitride ceramic bearing technology for aeroengine[J]. China Ceramic Industry, 2020, 27(3): 35-38 (in Chinese). [25] 王文雪,张 晶,颜家森,等.烧结助剂含量对氮化硅陶瓷球致密化和力学性能的影响[J].轴承,2021(4):23-27. WANG W X, ZHANG J, YAN J S, et al. Effect of sintering aids content on densification and mechanical properties of silicon nitride ceramic balls[J]. Bearing, 2021(4): 23-27 (in Chinese). [26] 李红涛,王昆平,于 琦,等.不同烧结方式对氮化硅陶瓷球综合性能的影响[J].轴承,2020(12):22-24. LI H T, WANG K P, YU Q, et al. Effects of different sintering methods on comprehensive properties of Si3N4 ceramic balls[J]. Bearing, 2020(12): 22-24 (in Chinese). [27] Silicon nitride (CAS 12033-89-5) market research report 2014[R]. M2 Presswire, 2014. [28] WEI Q H, WANG C H, LI L, et al. Study on damp-proofand enhanced coating on porous silicon nitride surface by sealing[J].Rare Metal Materials and Engineering, 2012, 41(3): 278-281. [29] 董 薇,汪长安,尉 磊,等.烧结助剂含量对多孔Si3N4/BN复合陶瓷力学性能和介电性能的影响[J].硅酸盐学报,2012,40(6):851-855. DONG W C A, YU L, et al. Effect of sintering additive content on mechanical and dielectric properties of porous Si3N4/BN composite ceramics[J]. Journal of the Chinese Ceramic Society, 2012, 40(6): 851-855 (in Chinese). [30] LYSENKO V, PÉRICHON S, REMAKI B, et al. Thermal isolation in microsystems with porous silicon[J]. Sensors and Actuators A: Physical, 2002, 99(1/2): 13-24. [31] 于方丽,杨建锋,薛耀辉,等.烧结助剂对多孔氮化硅陶瓷的力学性能及介电性能的影响[J].硅酸盐学报,2008,36(8):1037-1041. YU F L, YANG J F, XUE Y H, et al. Effect of sintering aid on mechanical and dielectric properties of porous silicon nitride ceramics[J]. Journal of the Chinese Ceramic Society, 2008, 36(8): 1037-1041 (in Chinese). [32] 尉 磊,汪长安,董 薇,等.烧结助剂含量对多孔氮化硅结构及性能的影响[J].宇航材料工艺,2011,41(1):109-112. YU L, WANG C G, DONG W, et al. Effect of content of sintering aids on microstructure and properties of porous silicon nitride[J]. Aerospace Materials & Technology, 2011, 41(1): 109-112 (in Chinese). [33] PLUCKNETT K P, QUINLAN M, GARRIDO L, et al. Microstructural development in porous β-Si3N4 ceramics prepared with low volume RE2O3-MgO-(CaO) additions (RE=La, Nd, Y, Yb)[J]. Materials Science and Engineering: A, 2008, 489(1/2): 337-350. [34] DEVILLE S. Freeze-casting of porous ceramics: a review of current achievements and issues[J]. Advanced Engineering Materials, 2008, 10(3): 155-169. [35] 李军齐,周万城,罗 发,等.制备工艺对多孔Si3N4陶瓷介电性能的影响[J].硅酸盐学报,2009,37(8):1443-1446. LI J Q, ZHOU W C, LUO F, et al. Influences of fabrication process on dielectric properties of porous silicon nitride ceramics[J]. Journal of the Chinese Ceramic Society, 2009, 37(8): 1443-1446 (in Chinese). [36] 王鹏举,吴玉萍,应国兵,等.凝胶注模技术制备高强度多孔氮化硅陶瓷[J].硅酸盐学报,2014,42(12):1496-1500. WANG P J, WU Y P, YING G B, et al. Preparation of high strength porous silicon nitride ceramics by gel-casting[J]. Journal of the Chinese Ceramic Society, 2014, 42(12): 1496-1500 (in Chinese). [37] DÍAZ A, HAMPSHIRE S. Characterisation of porous silicon nitride materials produced with starch[J]. Journal of the European Ceramic Society, 2004, 24(2): 413-419. [38] 张敬义,范锦鹏,刘晓明,等.烧结工艺对多孔氮化硅陶瓷显微结构和力学性能的影响[J].硅酸盐学报,2017,45(6):806-810. ZHANG J Y, FAN J P, LIU X M, et al. Effect of sintering process on microstructure and mechanical properties of silicon nitride[J]. Journal of the Chinese Ceramic Society, 2017, 45(6): 806-810 (in Chinese). [39] 张立同,刘晓菲,殷小玮,等.一种透波型SiN纤维增韧SiN陶瓷基复合材料的制备方法:CN103804006A[P].2014-05-21. ZHANG L T, LIU X F, YIN X W, et al. Preparation method of SiN fiber toughened SiN ceramic matrix composites: CN103804006A[P]. 2014-05-21 (in Chinese). [40] 门薇薇,轩立新,袁中毅,等.低介电常数多孔氮化硅陶瓷的制备[J].材料导报,2012,26(12):118-121. MEN W W, XUAN L X, YUAN Z Y, et al. The preparation of low dielectric constant porous silicon nitride ceramics[J]. Materials Review, 2012, 26(12): 118-121 (in Chinese). [41] 赵中坚,雷景轩,沈华祥,等.多孔氮化硅陶瓷天线罩材料制备及性能研究[J].陶瓷学报,2021,42(4):601-606. ZHAO Z J, LEI J X, SHEN H X, et al. Preparation and property of porous silicon nitride ceramic radome materials[J]. Journal of Ceramics, 2021, 42(4): 601-606 (in Chinese). [42] FUKASAWA T, DENG Z Y, ANDO M, et al. Synthesis of porous silicon nitride with unidirectionally aligned channels using freeze-drying process[J]. Journal of the American Ceramic Society, 2002, 85(9): 2151-2155. [43] KOETJE E L, SIMPSON F H, et al. Broadband high temperature radome apparatus: US, 4677443[P]. 1987-06-30. [44] 蔡德龙,陈 斐,何凤梅,等.高温透波陶瓷材料研究进展[J].现代技术陶瓷,2019,40(s1):4-120. CAI D L, CHEN F, HE F M, et al. Recent progress and prospestion on high-temperature wave-transparent ceramic materials[J]. Advanced Ceramics, 2019, 40(s1): 4-120 (in Chinese). [45] JIANG G P, YANG J F, GAO J Q, et al. Porous silicon nitride ceramics prepared by extrusion using starch as binder[J]. Journal of the American Ceramic Society, 2008, 91(11): 3510-3516. [46] HAGGERTY J S, LIGHTFOOT A. Opportunities for enhancing the thermal conductivities of SiC and Si3N4 ceramics through improved processing[M]//Ceramic Engineering and Science Proceedings. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1995: 475-487. [47] HIROSAKI N, OGATA S, KOCER C, et al. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β-Si3N4[J]. Physical Review B, 2002, 65(13): 134110. [48] DING S Q, ZENG Y P, JIANG D L. Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant[J]. Materials Letters, 2007, 61(11/12): 2277-2280. [49] LI Y S, KIM H N, WU H B, et al. Enhanced thermal conductivity in Si3N4 ceramic with the addition of Y2Si4N6C[J]. Journal of the American Ceramic Society, 2018, 101(9): 4128-4136. [50] FURUYA K, MUNAKATA F, MATSUO K, et al. Microstructural control of β-silicon nitride ceramics to improve thermal conductivity[J]. Journal of Thermal Analysis and Calorimetry, 2002, 69(3): 873-879. [51] ZHU X W, HAYASHI H, ZHOU Y, et al. Influence of additive composition on thermal and mechanical properties of β-Si3N4 ceramics[J]. Journal of Materials Research, 2004, 19(11): 3270-3278. [52] MIYAZAKI H, HIRAO K, YOSHIZAWA Y I. Effects of MgO addition on the microwave dielectric properties of high thermal-conductive silicon nitride ceramics sintered with ytterbia as sintering additives[J]. Journal of the European Ceramic Society, 2012, 32(12): 3297-3301. [53] KITAYAMA M, HIRAO K, TSUGE A, et al. Thermal conductivity of β-Si3N4: Ⅱ, effect of lattice oxygen[J]. Journal of the American Ceramic Society, 2004, 83(8): 1985-1992. [54] ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity[J]. Advanced Materials (Deerfield Beach, Fla), 2011, 23(39): 4563-4567. [55] 张景贤,席红安,段于森,等.高导热氮化硅陶瓷的快速制备和性能控制[J].真空电子技术,2020(1):37-40+47. ZHANG J X, XI H A, DUAN Y S, et al. Rapid preparation and performance control of silicon nitride ceramics with high thermal conductivity[J]. Vacuum Electronics, 2020(1): 37-40+47 (in Chinese). [56] ZHU X W, ZHOU Y, HIRAO K, et al. Processing and thermal conductivity of sintered reaction-bonded silicon nitride. I: effect of Si powder characteristics[J]. Journal of the American Ceramic Society, 2006, 89(11): 3331-3339. [57] ZHU X W, ZHOU Y, HIRAO K, et al. Processing and thermal conductivity of sintered reaction-bonded silicon nitride: (Ⅱ) effects of magnesium compound and yttria additives[J]. Journal of the American Ceramic Society, 2007, 90(6): 1684-1692. [58] ZHU X W, SAKKA Y, ZHOU Y, et al. A strategy for fabricating textured silicon nitride with enhanced thermal conductivity[J]. Journal of the European Ceramic Society, 2014, 34(10): 2585-2589. [59] HAYASHI H, HIRAO K, TORIYAMA M, et al. MgSiN2 addition as a means of increasing the thermal conductivity of β-silicon nitride[J]. Journal of the American Ceramic Society, 2001, 84(12): 3060-3062. [60] 范德蔚,张伟儒,刘俊成.β-Si3N4陶瓷热导率的研究现状[J].硅酸盐通报,2011,30(5):1105-1109. FAN D W, ZHANG W R, LIU J C. Current status of research on thermal conductivity of β-Si3N4 ceramics[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(5): 1105-1109 (in Chinese). [61] WILLS R R, HOLMQUIST S, WIMMER J M, et al. Phase relationships in the system Si3N4-Y2O3-SiO2[J]. Journal of Materials Science, 1976, 11(7): 1305-1309. [62] ABE O. Sintering process of Y2O3 and Al2O3-doped Si3N4[J]. Journal of Materials Science, 1990, 25(9): 4018-4026. [63] WANG B, YANG J, GUO R, et al. Microstructure characterization of hot-pressed β-silicon nitride containing β-Si3N4 seeds[J]. Materials Characterization, 2009, 60(8): 894-899. [64] 刘 剑,谢志鹏,肖志才,等.烧结助剂对氮化硅陶瓷热导率和力学性能的影响[J].硅酸盐学报,2020,48(12):1865-1871. LIU J, XIE Z P, XIAO Z C, et al. Effect of sintering aids on thermal conductivity and mechanical properties of silicon nitride ceramics[J]. Journal of the Chinese Ceramic Society, 2020, 48(12): 1865-1871 (in Chinese). [65] KITAYAMA M, HIRAO K, WATARI K, et al. Thermal conductivity of β-Si3N4: iii, effect of rare-earth (RE = La, Nd, Gd, Y, Yb, and Sc) oxide additives[J]. Journal of the American Ceramic Society, 2004, 84(2): 353-58. [66] 王为得,陈寰贝,李世帅,等.以YbH2-MgO体系为烧结助剂制备高热导率高强度氮化硅陶瓷[J].无机材料学报,2021,36(9):959-966. WANG W D, CHEN H B, LI S S, et al. Preparation of silicon nitride with high thermal conductivity and high flexural strength using YbH2-MgO as sintering additive[J]. Journal of Inorganic Materials, 2021, 36(9): 959-966 (in Chinese). [67] YANG C P, YE F, MA J, et al. Comparative study of fluoride and non-fluoride additives in high thermal conductive silicon nitride ceramics fabricated by spark plasma sintering and post-sintering heat treatment[J]. Ceramics International, 2018, 44(18): 23202-23207. [68] YANG C P, DING J J, MA J, et al. Microstructure tailoring of high thermal conductive silicon nitride through addition of nuclei with spark plasma sintering and post-sintering heat treatment[J]. Journal of Alloys and Compounds, 2019, 785: 89-95. [69] NEUMANN A, UNKEL C, WERRY C, et al. Prototype of a silicon nitride ceramic-based miniplate osteofixation system for the midface[J]. Otolaryngology-Head and Neck Surgery, 2006, 134(6): 923-930. [70] GORTH D J, PUCKETT S, ERCAN B, et al. Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium[J]. International Journal of Nanomedicine, 2012, 7: 4829-4840. [71] PEZZOTTI G, BOCK R M, MCENTIRE B J, et al. Silicon nitride bioceramics induce chemically driven lysis in porphyromonas gingivalis[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2016, 32(12): 3024-3035. [72] WEBSTER T J, PATEL A A, RAHAMAN M N, et al. Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants[J]. Acta Biomaterialia, 2012, 8(12): 4447-4454. [73] SOHRABI A, HOLLAND C, KUE R, et al. Proinflammatory cytokine expression of IL-1beta and TNF-alpha by human osteoblast-like MG-63 cells upon exposure to silicon nitride in vitro[J]. Journal of Biomedical Materials Research, 2000, 50(1): 43-49. [74] KUE R, SOHRABI A, NAGLE D, et al. Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs[J]. Biomaterials, 1999, 20(13): 1195-1201. [75] HOWLETT C R, MCCARTNEY E, CHING W. The effect of silicon nitride ceramic on rabbit skeletal cells and tissue. An in vitro and in vivo investigation[J]. Clinical Orthopaedics and Related Research, 1989(244): 293-304. [76] NEUMANN A, RESKE T, HELD M, et al. Comparative investigation of the biocompatibility of various silicon nitride ceramic qualities in vitro[J]. Journal of Materials Science Materials in Medicine, 2004, 15(10): 1135-1140. [77] BERNERO J P, KHANDKAR A C, LAKSHMINARAAYANAN R, et al. Knee prosthesis with ceramic tibial component: US7776085[P]. 2010-08-17. [78] RAHAMAN M N, YAO A H, BAL B S, et al. Ceramics for prosthetic hip and knee joint replacement[J]. Journal of the American Ceramic Society, 2007, 90(7): 1965-1988. [79] PEZZOTTI G, OHGITANI E, SHIN-YA M, et al. Instantaneous “catch-and-kill” inactivation of SARS-CoV-2 by nitride ceramics[J]. Clinical and Translational Medicine, 2020, 10(6): e212. |
[1] | 姜常玺, 周立娟, 庄英华, 廖圣俊, 王建军. 三元复合烧结助剂Er2O3-Mg2Si-Yb2O3对氮化硅陶瓷性能的影响[J]. 硅酸盐通报, 2022, 41(4): 1423-1432. |
[2] | 安然, 徐中慧, 帅勤, 胡丹, 向应令, 韩林沛. 磷酸基地聚合物多孔材料的制备及其隔热防火性能研究[J]. 硅酸盐通报, 2021, 40(4): 1258-1265. |
[3] | 康国卫, 刘馨, 吴然, 汪涤, 李莹, 刘新红, 贾全利. 氧化铝源对CA6多孔材料相组成和显微结构的影响[J]. 硅酸盐通报, 2021, 40(3): 1038-1045. |
[4] | 胡波;高宗强;鲍崇高. 硅酸钙/β-磷酸三钙生物陶瓷的光固化成型工艺及性能研究[J]. 硅酸盐通报, 2020, 39(9): 2950-2955. |
[5] | 王立宁;陈振;张增志. 发泡剂对矿渣基地质聚合物气孔结构及吸水性的影响[J]. 硅酸盐通报, 2020, 39(7): 2085-2091. |
[6] | 张佳康;苏岳威;姚耿;吴蓬;王俊祥;吕宪俊. 地聚物泡沫混凝土的研究与应用[J]. 硅酸盐通报, 2020, 39(5): 1371-1376. |
[7] | 余晓初;张辉;陆聪;王晓刚;刘国友;刘学建;黄政仁. 氮化硅陶瓷覆铜基板制备及可靠性评估[J]. 硅酸盐通报, 2020, 39(5): 1614-1619. |
[8] | 白彪坤;孟岳;陈叔平. 4A分子筛的吸附性能与孔结构研究[J]. 硅酸盐通报, 2020, 39(10): 3367-3372. |
[9] | 牛云辉;李军;卢忠远;张玉苹. 水泥多孔材料及Cr(Ⅲ)动态吸附性能研究[J]. 硅酸盐通报, 2019, 38(5): 1510-151. |
[10] | 尚瑞瑞;韩涛;靳秀芝. 煤矸石基多孔材料对废水中Pb2+的吸附研究[J]. 硅酸盐通报, 2019, 38(4): 1211-121. |
[11] | 邱科礼;张晶. 树脂基复合材料在海军装备中的研究进展及应用[J]. 硅酸盐通报, 2019, 38(12): 3873-387. |
[12] | 徐伟伟;袁军堂;殷增斌;汪振华. 氮化硅陶瓷材料微波烧结研究现状[J]. 硅酸盐通报, 2017, 36(1): 71-76. |
[13] | 尚建丽;陈奇侠. 地聚物多孔轻质高强材料的制备及孔结构特性[J]. 硅酸盐通报, 2016, 35(5): 1385-1389. |
[14] | 武小娟;王明远;张翼飞;李苏;李俊寿. MgAl2O4透明陶瓷粉体的研究进展[J]. 硅酸盐通报, 2016, 35(1): 137-140. |
[15] | 黎阳;杨莲;洪流;杨闯;高家诚. 惰性气氛中含氧氮化硅陶瓷纤维的热稳定性研究[J]. 硅酸盐通报, 2015, 34(7): 1798-1802. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||