[1] 钱春香,张 霄,伊海赫.微生物提升钢渣胶凝材料安定性和强度的作用及机理[J].硅酸盐通报,2020,39(8):2363-2371. QIAN C X, ZHANG X, YI H H. Effect and mechanism of microorganism to improve the stability and strength of steel slag cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2363-2371 (in Chinese). [2] 姚恒山,陈思佳,陈德伟,等.加速碳酸化条件下钢渣块体体积安定性的研究[J].硅酸盐通报,2020,39(1):187-193. YAO H S, CHEN S J, CHEN D W, et al. Study on soundness of steel slag block under accelerated carbonation[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(1): 187-193 (in Chinese). [3] 史 迪,叶家元,张文生,等.钢渣碳化砖的碱激发-碳化协同作用机制[J].钢铁研究学报,2021,33(11):1127-1133. SHI D, YE J Y, ZHANG W S, et al. Synergistic mechanisms of alkali-activation and carbonation of carbonated steel slag bricks[J]. Journal of Iron and Steel Research, 2021, 33(11): 1127-1133 (in Chinese). [4] 叶家元,张文生,史 迪,等.钢渣碳化砖的碱激发-碳化协同效应影响因素[J].硅酸盐学报,2019,47(11):1582-1592. YE J Y, ZHANG W S, SHI D, et al. Synergistic effect of alkali-activation and carbonation on carbonated steel slag bricks[J]. Journal of the Chinese Ceramic Society, 2019, 47(11): 1582-1592 (in Chinese). [5] 张永胜,苏依林,詹其伟.微生物矿化技术制备不锈钢渣砖[J].新型建筑材料,2019,46(10):48-50+83. ZHANG Y S, SU Y L, ZHAN Q W. Preparation of stainless steel slag bricks by microbial mineralization technology[J]. New Building Materials, 2019, 46(10): 48-50+83 (in Chinese). [6] 李奇男.微波辅助铵盐浸出不锈钢渣中的钙及其碳酸化研究[D].武汉:武汉科技大学,2017:11-12. LI Q N. Investigation on the microwave assisted leaching of calcium in the stainless steel slag by ammonium salts and its carbonation process[D]. Wuhan: Wuhan University of Science and Technology, 2017: 11-12 (in Chinese). [7] 吕 岩,那贤昭,齐渊洪,等.不锈钢AOD渣粉尘控制及其工程性能[J].钢铁,2015,50(4):76-83. LYU Y, NA X Z, QI Y H, et al. Dust control and engineering performance of stainless steel AOD slag[J]. Iron & Steel, 2015, 50(4): 76-83 (in Chinese). [8] GUAN X M, LIU S H, FENG C H, et al. The hardening behavior of γ-C2S binder using accelerated carbonation[J]. Construction and Building Materials, 2016, 114: 204-207. [9] 穆元冬,雪高瑞,赵思雪,等.γ型硅酸二钙的碳化研究进展[J].硅酸盐学报,2017,45(8):1197-1203. MU Y D, XUE G R, ZHAO S X, et al. Development of carbonation of γ-dicalcium silicate[J]. Journal of the Chinese Ceramic Society, 2017, 45(8): 1197-1203 (in Chinese). [10] 周 雄,钟旷楠,穆元冬,等.0-3型γ-C2S压电复合材料的制备及性能研究[J].武汉理工大学学报,2018,40(4):9-13. ZHOU X, ZHONG K N, MU Y D, et al. Preparation and properties of 0-3 γ-C2S piezoelectric composite[J]. Journal of Wuhan University of Technology, 2018, 40(4): 9-13 (in Chinese). [11] 刘松辉,管学茂,邱 满,等.通过加速碳化激发γ-C2S矿物的活性[J].硅酸盐学报,2016,44(5):658-662. LIU S H, GUAN X M, QIU M, et al. Activation of γ-C2S mineral by accelerated carbonation[J]. Journal of the Chinese Ceramic Society, 2016, 44(5): 658-662 (in Chinese). [12] 朱 明,雪高瑞,穆元冬.γ-C2S和β-C2S的碳化与水化活性研究[J].硅酸盐通报,2017,36(9):3036-3040+3052. ZHU M, XUE G R, MU Y D. Carbonation and hydration activity of γ-C2S and β-C2S[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(9): 3036-3040+3052 (in Chinese). [13] 明心昭,刘志超,王发洲,等.Al2O3掺杂对γ-C2S碳化性能的影响[J].硅酸盐通报,2021,40(6):2003-2010. MING X Z, LIU Z C, WANG F Z, et al. Effect of Al2O3 doping on carbonation performance of γ-C2S[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 2003-2010 (in Chinese). [14] FANG Y F, LIU Z C, WANG Q H, et al. Strength development and products evolution of β-C2S and γ-C3S induced by accelerated carbonation curing[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2020, 35(6): 1053-1060. [15] 邱 满,管学茂,刘松辉,等.用工业原料制备自粉化低碳水泥[J].硅酸盐通报,2016,35(12):3948-3951+3963. QIU M, GUAN X M, LIU S H, et al. Preparation of self-pulverized low-carbon cement by industrial raw materials[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 3948-3951+3963 (in Chinese). [16] 吴昊泽,丁 亮,郑文军,等.钢渣制品的最佳碳化制度[J].粉煤灰,2011,23(2):24-26. WU H Z, DING L, ZHENG W J, et al. Optimum carbonization system of steel slag product[J]. Coal Ash, 2011, 23(2): 24-26 (in Chinese). [17] 罗乃将,朱宝贵,顾红霞,等.碳化养护制备高强钢渣砖的研究[J].新型建筑材料,2020,47(5):71-74. LUO N J, ZHU B G, GU H X, et al. Study on the preparation of high strength steel slag brick by carbonation curing[J]. New Building Materials, 2020, 47(5): 71-74 (in Chinese). [18] 李刚林.碳化钢渣制备墙地建材制品[D].济南:济南大学,2015:35-36. LI G L. Using steel slag to prepare building materials by carbonation technology[D]. Jinan: University of Jinan, 2015: 35-36 (in Chinese). [19] CHANG J, FANG Y F, SHANG X P. The role of β-C2S and γ-C2S in carbon capture and strength development[J]. Materials and Structures, 2016, 49(10): 4417-4424. [20] 常 钧,吴昊泽.钢渣碳化机理研究[J].硅酸盐学报,2010,38(7):1185-1190. CHANG J, WU H Z. Study on carbonation mechanism of steel slag[J]. Journal of the Chinese Ceramic Society, 2010, 38(7): 1185-1190 (in Chinese). [21] CHEN Z X, CHU S H, LEE Y S, et al. Coupling effect of γ-dicalcium silicate and slag on carbonation resistance of low carbon materials[J]. Journal of Cleaner Production, 2020, 262: 121385. [22] 管学茂,刘松辉,张海波,等.低钙硅酸盐矿物碳化硬化性能研究进展[J].硅酸盐学报,2018,46(2):263-267. GUAN X M, LIU S H, ZHANG H B, et al. Carbonation and hardening properties of low calcium silicates minerals-a short review[J]. Journal of the Chinese Ceramic Society, 2018, 46(2): 263-267 (in Chinese). [23] 杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000:286-287. YANG N R, YUE W H. The handbook of inorganic metalloid materials atlas[M]. Wuhan: Wuhan University of Technology Press, 2000: 286-287 (in Chinese). |