[1] 逯迎春.放射性焚烧灰处理方法的研究[J].广东化工,2013,40(7):70-71+78. LU Y C. Research on the treatment of incineration ash[J]. Guangdong Chemical Industry, 2013, 40(7): 70-71+78 (in Chinese). [2] 华正韬,刘自强,侯辉娟.放射性焚烧灰处理工艺研究[J].产业与科技论坛,2020,19(21):45-47. HUA Z T, LIU Z Q, HOU H J. Research on treatment process of radioactive incineration ash[J]. Industrial & Science Tribune, 2020, 19(21): 45-47 (in Chinese). [3] 蒲心诚,王勇威.高效活性矿物掺料与混凝土的高性能化(续)[J].混凝土,2002(3):21-23. PU X C, WANG Y W. Efficient active mineral additives and performance improving of the concrete[J]. Concrete, 2002(3): 21-23 (in Chinese). [4] 厉 超.矿渣、高/低钙粉煤灰玻璃体及其水化特性研究[D].北京:清华大学,2011. LI C. Research on the glass phase of slag, high calcium fly ash and low calcium fly ash and their hydration mechanism[D]. Beijing: Tsinghua University, 2011 (in Chinese). [5] 贾世杰,徐洪艳,陈 辉.粉煤灰-水泥基胶结充填体早期强度及水化机理研究[J].采矿技术,2021,21(3):164-167+183. JIA S J, XU H Y, CHEN H. Study on early strength and hydration mechanism of fly ash-cement based cemented backfill[J]. Mining Technology, 2021, 21(3): 164-167+183 (in Chinese). [6] HAHA M B, DE WEERDT K, LOTHENBACH B. Quantification of the degree of reaction of fly ash[J]. Cement and Concrete Research, 2010, 40(11): 1620-1629. [7] 汤鸿霄.无机高分子絮凝剂的基础研究[J].环境化学,1990,9(3):1-12. TANG H X. Basic studies of inorganic polymer flocculants[J]. Environmental Chemistry, 1990, 9(3): 1-12 (in Chinese). [8] CHEN W, LI B, LI Q, et al. Effect of polyaluminum chloride on the properties and hydration of slag-cement paste[J]. Construction and Building Materials, 2016, 124: 1019-1027. [9] 王奕仁,王栋民,翟梦怡,等.聚合铝对锂渣-水泥复合胶凝材料水化硬化特性的影响[J].矿业科学学报,2019,4(1):86-94. WANG Y R, WANG D M, ZHAI M Y, et al. Effect of polymeric aluminum on hydration hardening characteristics of lithium slag-cement composite cementitious materials[J]. Journal of Mining Science and Technology, 2019, 4(1): 86-94 (in Chinese). [10] 陈 伟,田 健,郭 东,等.聚合铝改性再生胶凝材料力学性质与微结构[J].硅酸盐通报,2017,36(9):3094-3098+3104. CHEN W, TIAN J, GUO D, et al. Mechanical property and microstructure of regenerated cementitious materials with poly-aluminum[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(9): 3094-3098+3104 (in Chinese). [11] ALONSO M C, WALKER C, NAITO M, et al. Development of an accurate pH measurement methodology for the pore fluids of low pH cementitious materials[R]. SKB R-12-02. Stockholm, SKB. Svensk Kärnbränslehantering AB. Swedish Nuclear Fuel and Waste Management, 2012. [12] 陈 伟,余匡迪,袁 波.聚合硫酸铝调控硫酸盐激发尾砂充填材料工作性能与微观结构的研究[J].硅酸盐通报,2020,39(6):1822-1827+1834. CHEN W, YU K D, YUAN B. Controlling the workability and microstructure of sulfate activated tailings based backfills using polyaluminum sulfate[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1822-1827+1834 (in Chinese). [13] 李 响.复合水泥基材料水化性能与浆体微观结构稳定性[D].北京:清华大学,2010. LI X. Hydration performance and microstructural stability of complex cementitious materials[D]. Beijing: Tsinghua University, 2010 (in Chinese). [14] 陈镇杉.一种改性聚合硫酸铝型速凝剂的适应性研究[J].建材世界,2020,41(3):10-13. CHEN Z S. Study on adaptability of flash setting admixture composed of modified polyaluminium sulfate[J]. The World of Building Materials, 2020, 41(3): 10-13 (in Chinese). [15] LI B, LING X, LIU X, et al. Hydration of Portland cements in solutions containing high concentration of borate ions: effects of LiOH[J]. Cement and Concrete Composites, 2019, 102: 94-104. [16] ZHANG X Y, GLASSER F P, SCRIVENER K L. Reaction kinetics of dolomite and portlandite[J]. Cement and Concrete Research, 2014, 66: 11-18. [17] SANDERS J P, GALLAGHER P K. Kinetic analyses using simultaneous TG/DSC measurements: part I: decomposition of calcium carbonate in argon[J]. Thermochimica Acta, 2002, 388(1/2): 115-128. |