[1] MAJZOUB J, BAROOTCHI S, TAVELLI L, et al. Guided tissue regeneration combined with bone allograft in infrabony defects: clinical outcomes and assessment of prognostic factors[J]. Journal of Periodontology, 2020, 91(6): 746-755. [2] HU J, ZENG Y, SHEN C, et al. Mechanism of platelet-rich plasma in promoting bone defect repair[J]. Journal of Biological Regulators and Homeostatic Agents, 2019, 33(1): 97-103. [3] 曹国定,裴豫琦,刘 军,等.骨缺损修复材料的研究进展[J].中国骨伤,2021,34(4):382-388. CAO G D, PEI Y Q, LIU J, et al. Research progress on bone defect repair materials[J]. China Journal of Orthopaedics and Traumatology, 2021, 34(4): 382-388 (in Chinese). [4] 黄祖泰,熊 龙.治疗骨缺损的几种不同方式[J].赣南医学院学报,2021,41(1):98-101. HUANG Z T, XIONG L. There are several different ways to treat bone defects[J]. Journal of Gannan Medical University, 2021, 41(1): 98-101 (in Chinese). [5] 庞伟峰,李会军,李 开,等.自体骨移植在股骨干骨折不愈合中的疗效分析[J].中华灾害救援医学,2021,9(3):852-855. PANG W F, LI H J, LI K, et al. An effect analysis for autologous bone grafts in treating femoral fracture nonunion[J]. Chinese Journal of Disaster Medicine, 2021, 9(3): 852-855 (in Chinese). [6] ZAMARIOLI A, MARANHO D A C, BATTAGLINO R A, et al. Mechanical-loading through passive weigh-bearing and artificial electrical stimulation prevent and even revert sci-induced bone loss quality[J]. Journal of Clinical Densitometry, 2014, 17(3): 403. [7] TIGUNTA S, PISITPIPATHSIN N, KANTHA P, et al. Electrical properties of calcium phosphate/BZT bioglass-ceramics prepared by incorporation method[J]. Ferroelectrics, 2014, 459(1): 188-194. [8] TKACHENKO S S, MUSSA M, RUTSKII V V. Electrical stimulation of artificial ossification of a muscle flap during plastic repair of a bone defect[J]. Bulletin of Experimental Biology and Medicine, 1978, 85(3): 384-386. [9] KUMAR V, SARKAR K, BAVYA DEVI K, et al. Quantitative assessment of degradation, cytocompatibility, and in vivo bone regeneration of silicon-incorporated magnesium phosphate bioceramics[J]. Journal of Materials Research, 2019, 34(24): 4024-4036. [10] 刘峙辰.具有压电特性的BaTiO3-HA骨替代材料的细胞学及动物实验研究[D].西安:第四军医大学,2016. LIU Z C. Cytology and animal experimental study of piezoelectric properties bone substitute material HA-BaTiO3[D]. Xi'an: The Fourth Military Medical University, 2016 (in Chinese). [11] 付 翔,李明新,彭驰伟,等.还原氧化石墨烯对人原代成纤维细胞的毒性研究[J].化学与生物工程,2021,38(2):49-52. FU X, LI M X, PENG C W, et al. Cytotoxicity of reduced graphene oxide on human primary fibroblasts[J]. Chemistry & Bioengineering, 2021, 38(2): 49-52 (in Chinese). [12] CHEN F Y, WANG M L, WANG J, et al. Effects of hydroxyapatite surface nano/micro-structure on osteoclast formation and activity[J]. Journal of Materials Chemistry B, 2019, 7(47): 7574-7587. [13] BAXTER F R, TURNER I G, BOWEN C R, et al. An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells[J]. Journal of Materials Science Materials in Medicine, 2009, 20(8): 1697-1708. [14] FENG J Q. Promotion of osteogenesis by a piezoelectric biological ceramic[J]. Biomaterials, 1997, 18(23): 1531-1534. [15] LU D Y, GAO X L, WANG S. Abnormal Curie-temperature shift in Ho-doped BaTiO3 ceramics with the self-compensation mode[J]. Results in Physics, 2019, 12: 585-591. [16] WANG D K, DONG S M, ZHOU H J, et al. Effect of pyrolytic carbon interface on the properties of 3D C/ZrC-SiC composites fabricated by reactive melt infiltration[J]. Ceramics International, 2016, 42(8): 10272-10278. [17] 唐汉玲,曾燮榕,熊信柏,等.短切碳纤维含量对Csf/SiC复合材料力学性能的影响[J].硅酸盐学报,2007,35(8):1057-1061. TANG H L, ZENG X R, XIONG X B, et al. Effect of short carbon fiber content on the mechanical properties of composite Csf/SiC[J]. Journal of the Chinese Ceramic Society, 2007, 35(8): 1057-1061 (in Chinese). [18] 徐 颖,郑志涛,许维伟,等.短切碳纤维增强碳化硅陶瓷基复合材料的高温冲击压缩力学性能[J].材料导报,2016,30(14):98-103. XU Y, ZHENG Z T, XU W W, et al. Mechanical property of short carbon fiber-reinforced SiC ceramic matrix composites in high temperature shock compression[J]. Materials Review, 2016, 30(14): 98-103 (in Chinese). [19] RUAN S L, WEI S Y, GONG W Z, et al. Strengthening, toughening, and self-healing for carbon fiber/epoxy composites based on PPESK electrospun coaxial nanofibers[J]. Journal of Applied Polymer Science, 2021, 138(12): 50063. [20] CLABEL H J L, AWAN I T, RIVERA V A G, et al. Growth process and grain boundary defects in Er doped BaTiO3 processed by EB-PVD: a study by XRD, FTIR, SEM and AFM[J]. Applied Surface Science, 2019, 493: 982-993. [21] 胡秀丽,姚霞喜,张文君,等.不同碳源多孔碳纤维制备及其吸附性能[J].材料研究学报,2019,33(5):379-386. HU X L, YAO X X, ZHANG W J, et al. Preparation of porous carbon fibers with different carbon sources and their adsorption properties[J]. Chinese Journal of Materials Research, 2019, 33(5): 379-386 (in Chinese). [22] BAI H, LI J, HONG Y, et al. Enhanced ferroelectricity and magnetism of quenched (1-x)BiFeO3-xBaTiO3 ceramics[J]. Journal of Advanced Ceramics, 2020, 9(4): 511-516. [23] MINOMURA S, KAWAKUBO T, NAKAGAWA T, et al. Pressure dependence of curie point and tetragonal-orthorhombic transition point of BaTiO3[J]. Japanese Journal of Applied Physics, 1964, 3(9): 562-563. [24] 刘永慧.碳纤维增韧环氧树脂的性能研究[J].中国设备工程,2021(7):237-238. LIU Y H. Study on properties of carbon fiber toughened epoxy resin[J]. China Plant Engineering, 2021(7): 237-238 (in Chinese). [25] WANG H X, ZHANG H, GOTO K, et al. Stress mapping reveals extrinsic toughening of brittle carbon fiber in polymer matrix[J]. Science and Technology of Advanced Materials, 2020, 21(1): 267-277. [26] YIN H, ZHANG M J, AN R F, et al. Diosgenin derivatives as potential antitumor agents: synthesis, cytotoxicity, and mechanism of action[J]. Journal of Natural Products, 2021, 84(3): 616-629. [27] ARAB-AHMADI S, IRANI S, BAKHSHI H, et al. Immobilization of carboxymethyl chitosan/laponite on polycaprolactone nanofibers as osteoinductive bone scaffolds[J]. Polymers for Advanced Technologies, 2021, 32(2): 755-765. |