[1] 谷向民,侯京田.工业废渣在水泥工业中的应用研究[J].散装水泥,2021(1):8-9. GU X M, HOU J T. Study on the application of industrial waste residue in cement industry[J]. Bulk Cement, 2021(1): 8-9 (in Chinese). [2] 曾学敏.水泥工业能源消耗现状与节能潜力[J].中国水泥,2006(3):16-21. ZENG X M. Present situation of energy consumption and energy saving potential in cement industry[J]. China Cement, 2006(3): 16-21 (in Chinese). [3] 魏军晓,耿元波,沈 镭,等.中国水泥生产与碳排放现状分析[J].环境科学与技术,2015,38(8):80-86. WEI J X, GENG Y B, SHEN L, et al. Analysis of Chinese cement production and CO2 emission[J]. Environmental Science & Technology, 2015, 38(8): 80-86 (in Chinese). [4] 李 礼,王立久.硅酸盐水泥绿色度的评价实例研究[J].混凝土,2019(10):80-83. LI L, WANG L J. Application example of evaluation system of Portland cement greenness[J]. Concrete, 2019(10): 80-83 (in Chinese). [5] LIU Z B, ZONG Y B, FENG H, et al. Influence of ferrum on crystallization and microstructure of steel slag based glass-ceramics[J]. Transactions of the Indian Ceramic Society, 2015, 74(1): 29-34. [6] GUO J L, BAO Y P, WANG M. Steel slag in China: treatment, recycling, and management[J]. Waste Management, 2018, 78: 318-330. [7] JIANG Y, LING T C, SHI C J, et al. Characteristics of steel slags and their use in cement and concrete: a review[J]. Resources, Conservation and Recycling, 2018, 136: 187-197. [8] 陈应华.大亚湾大辣甲南人工鱼礁区的生态效应分析[D].广州:暨南大学,2009. CHEN Y H. Analysis of ecological effects of southern dalajia island artificial reef area in daya bay[D]. Guangzhou: Jinan University, 2009 (in Chinese). [9] 赵立杰,张 芳.钢渣资源综合利用及发展前景展望[J].材料导报,2020,34(s2):1319-1322+1333. ZHAO L J, ZHANG F. Comprehensive utilization and development prospect of steel slag resources full text replacement[J]. Materials Reports, 2020, 34(s2): 1319-1322+1333 (in Chinese). [10] 李琳琳,苏兴文,李晓阳,等.鞍钢钢渣矿渣制备人工鱼礁混凝土复合胶凝材料[J].硅酸盐通报,2012,31(1):117-122. LI L L, SU X W, LI X Y, et al. Preparation of composite cementitious material for building artificial reefs concrete from angang steel slag and granulated high furnace slag[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(1): 117-122 (in Chinese). [11] 李 颖,倪 文,陈德平,等.大掺量冶金渣制备高强度人工鱼礁混凝土的试验研究[J].北京科技大学学报,2012,34(11):1308-1313. LI Y, NI W, CHEN D P, et al. Experimental investigation on concrete made from iron and steel slags for building high-strength artificial reefs[J]. Journal of University of Science and Technology Beijing, 2012, 34(11): 1308-1313 (in Chinese). [12] 崔孝炜,倪 文,任 超.钢渣矿渣基全固废胶凝材料的水化反应机理[J].材料研究学报,2017,31(9):687-694. CUI X W, NI W, REN C. Hydration mechanism of all solid waste cementitious materials based on steel slag and blast furnace slag[J].Chinese Journal of Materials Research, 2017(9): 687-694 (in Chinese). [13] 李 颖,吴保华,倪 文,等.矿渣-钢渣-石膏体系早期水化反应中的协同作用[J].东北大学学报(自然科学版),2020,41(4):581-586. LI Y, WU B H, NI W, et al. Synergies in early hydration reaction of slag-steel slag-gypsum system[J]. Journal of Northeastern University (Natural Science), 2020, 41(4): 581-586 (in Chinese). [14] WANG X, NI W, LI J J, et al. Carbonation of steel slag and gypsum for building materials and associated reaction mechanisms[J]. Cement and Concrete Research, 2019, 125: 105893. [15] 徐 东,倪 文,汪群慧,等.碱渣复合胶凝材料制备无熟料混凝土[J].哈尔滨工业大学学报,2020,52(8):151-160. XU D, NI W, WANG Q H, et al. Preparation of clinker-free concrete by using soda residue composite cementitious material[J]. Journal of Harbin Institute of Technology, 2020, 52(8): 151-160 (in Chinese). [16] 于 淼,倪 文,刘 佳,等.低碱度生态型人工鱼礁胶凝材料的初步研究[J].混凝土与水泥制品,2011(11):63-67. YU M, NI W, LIU J, et al. Preliminary study on cementitious materials for ecotypic artificial reef with low alkalinity[J]. China Concrete and Cement Products, 2011(11): 63-67 (in Chinese). [17] 陆 磊,潘志宏,马舒奇,等.新型生态人工鱼礁材料性能试验研究[J].混凝土,2020(9):144-147. LU L, PAN Z H, MA S Q, et al. Experimental study on the performance of new ecological artificial reef materials[J]. Concrete, 2020(9): 144-147 (in Chinese). [18] GENG J J, ZHOU M, LI Y X, et al. Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation[J]. Construction and Building Materials, 2017, 153: 185-192. [19] LI Y Y, NI W, GAO W, et al. Corrosion evaluation of steel slag based on a leaching solution test[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(7): 790-801. [20] MURAKAMI K, DOSHO Y, UEMURA K, et al. Concrete demolition and surface scraping using high voltage pulse discharge[J]. Journal of Advanced Concrete Technology, 2018, 16(8): 358-367. [21] DUAN C L, HAN J, ZHAO S, et al. The stripping effect of using high voltage electrical pulses breakage for waste printed circuit boards[J]. Waste Management, 2018, 77: 603-610. [22] 姜梅芬,吕宪俊.混凝土早强剂的研究与应用进展[J].硅酸盐通报,2014,33(10):2527-2533. JIANG M F, LV X J. Research and application progresses of concrete early strength agent[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(10): 2527-2533 (in Chinese). [23] 吴 辉,倪 文,崔孝炜,等.利用热闷钢渣制备低收缩铁路轨枕混凝土[J].材料热处理学报,2014,35(4):7-12. WU H, NI W, CUI X W, et al. Preparation of concrete sleeper using hot steaming steel slag with low autogenous shrinkage[J]. Transactions of Materials and Heat Treatment, 2014, 35(4): 7-12 (in Chinese). [24] 潘庆林.粒化高炉矿渣的水化机理探讨[J].水泥,2004(9):6-10. PAN Q L. Study on mechanism of hydration of granulated blast furnace slag[J]. Cement, 2004(9): 6-10 (in Chinese). [25] 贾艳涛.矿渣和粉煤灰水泥基材料的水化机理研究[D].南京:东南大学,2005. JIA Y T. The hydration mechanism of the BFS and FA cement based materials[D]. Nanjing: Southeast University, 2005 (in Chinese). [26] WANG X, NI W, JIN R Z, et al. Formation of Friedel's salt using steel slag and potash mine brine water[J]. Construction and Building Materials, 2019, 220: 119-127. [27] THOMAS J J, ALLEN A J, JENNINGS H M. Hydration kinetics and microstructure development of normal and CaCl2-accelerated tricalcium silicate pastes[J]. The Journal of Physical Chemistry C, 2009, 113(46): 19836-19844. [28] HILL J, SHARP J H. The hydration products of Portland cement in the presence of tin(II) chloride[J]. Cement and Concrete Research, 2003, 33(1): 121-124. |