[1] 陈宝春,季 韬,黄卿维,等.超高性能混凝土研究综述[J].建筑科学与工程学报,2014,31(3):1-24. CHEN B C, JI T, HUANG Q W, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24 (in Chinese). [2] 邵旭东,邱明红,晏班夫,等.超高性能混凝土在国内外桥梁工程中的研究与应用进展[J].材料导报,2017,31(23):33-43. SHAO X D, QIU M H, YAN B F, et al. A review on the research and application of ultra-high performance concrete in bridge engineering around the world[J]. Materials Review, 2017, 31(23): 33-43 (in Chinese). [3] 张云升,张文华,陈振宇.综论超高性能混凝土:设计制备·微观结构·力学与耐久性·工程应用[J].材料导报,2017,31(23):1-16. ZHANG Y S, ZHANG W H, CHEN Z Y. A complete review of ultra-high performance concrete: design and preparation, microstructure, mechanics and durability, engineering applications[J]. Materials Review, 2017, 31(23): 1-16 (in Chinese). [4] 陈宝春,林毅焌,杨 简,等.超高性能纤维增强混凝土中纤维作用综述[J].福州大学学报(自然科学版),2020,48(1):58-68. CHEN B C, LIN Y J, YANG J, et al. Review on fiber function in ultra-high performance fiber reinforced concrete[J]. Journal of Fuzhou University (Natural Science Edition), 2020, 48(1): 58-68 (in Chinese). [5] YU R, SPIESZ P, BROUWERS H J H. Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Cement and Concrete Research, 2014, 56: 29-39. [6] WONG V, KWAN A K H. A 3-parameter model for packing density prediction of ternary mixes of spherical particles[J]. Powder Technology, 2014, 268: 357-367. [7] 张文华,张仔祥,刘鹏宇,等.多尺度纤维增强超高性能混凝土的轴心抗拉和抗压行为[J].硅酸盐学报,2020,48(8):1155-1167. ZHANG W H, ZHANG Z X, LIU P Y, et al. Uniaxial tensile and compressive stress-strain behavior of multi-scale fiber-reinforced ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1155-1167 (in Chinese). [8] LARRARD F. Concrete mixture proportioning: a scientific approach[M]. CRC Press, 1999. [9] LI L G, ZHUO H X, ZHU J, et al. Packing density of mortar containing polypropylene, carbon or basalt fibres under dry and wet conditions[J]. Powder Technology, 2019, 342: 433-440. [10] YU R, SPIESZ P, BROUWERS H J H. Energy absorption capacity of a sustainable ultra-high performance fibre reinforced concrete (UHPFRC) in quasi-static mode and under high velocity projectile impact[J]. Cement and Concrete Composites, 2016, 68: 109-122. [11] WU Z M, SHI C J, HE W, et al. Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements[J]. Cement and Concrete Composites, 2017, 79: 148-157. [12] 余 睿,范定强,水中和,等.基于颗粒最紧密堆积理论的超高性能混凝土配合比设计[J].硅酸盐学报,2020,48(8):1145-1154. YU R, FAN D Q, SHUI Z H, et al. Mix design of ultra-high performance concrete based on particle densely packing theory[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1145-1154 (in Chinese). [13] 刘 潇,范定强,胡 锋,等.基于D-最优设计方法预测超高性能混凝土的湿堆积密实度及力学性能[J].节能,2020,39(7):99-104. LIU X, FAN D Q, HU F, et al. Prediction of wet packing density and mechanical properties of ultra-high performance concrete by D-optimal design method[J]. Energy Conservation, 2020, 39(7): 99-104 (in Chinese). [14] FAN D Q, YU R, SHUI Z H, et al. A new design approach of steel fibre reinforced ultra-high performance concrete composites: experiments and modeling[J]. Cement and Concrete Composites, 2020, 110: 103597. [15] WONG H H C, KWAN A K H. Packing density of cementitious materials: part 1—measurement using a wet packing method[J]. Materials and Structures, 2008, 41(4): 689-701. [16] YANG R, YU R, SHUI Z H, et al. Feasibility analysis of treating recycled rock dust as an environmentally friendly alternative material in ultra-high performance concrete (UHPC)[J]. Journal of Cleaner Production, 2020, 258: 120673. [17] LI L G, KWAN A K H. Packing density of concrete mix under dry and wet conditions[J]. Powder Technology, 2014, 253: 514-521. [18] RAMEZANIANPOUR A A, ESMAEILI M, GHAHARI S A, et al. Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers[J]. Construction and Building Materials, 2013, 44: 411-418. [19] MURALIDHAR R V, CHIRUMAMILA R R, MARCHANT R, et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources[J]. Biochemical Engineering Journal, 2001, 9(1): 17-23. |