[1] DING Y N, HUANG Y S, ZHANG Y L, et al. Self-monitoring of freeze-thaw damage using triphasic electric conductive concrete[J]. Construction and Building Materials, 2015, 101: 440-446. [2] 孟博旭,许金余,彭 光.纳米碳纤维增强混凝土抗冻性能试验[J].复合材料学报,2019,36(10):2458-2468. MENG B X, XU J Y, PENG G. Anti-freeze performance test of nano carbon fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2019, 36(10): 2458-2468 (in Chinese). [3] 杨庆宽.石墨烯和碳纤维复掺对水泥基材料的改性研究[D].济南:济南大学,2020. YANG Q K. Study of cement-based materials by the mixture of graphene and carbon fiber[D]. Jinan: University of Jinan, 2020 (in Chinese). [4] CHEN M, GAO P W, GENG F, et al. Mechanical and smart properties of carbon fiber and graphite conductive concrete for internal damage monitoring of structure[J]. Construction and Building Materials, 2017, 142: 320-327. [5] DONNINI J, BELLEZZE T, CORINALDESI V. Mechanical, electrical and self-sensing properties of cementitious mortars containing short carbon fibers[J]. Journal of Building Engineering, 2018, 20: 8-14. [6] 李北星,陈梦义,王 威,等.梯级粉磨制备铁尾矿-矿渣基胶凝材料[J].建筑材料学报,2014,17(2):206-211. LI B X, CHEN M Y, WANG W, et al. Iron tailings-slag based cementitious materials prepared by cascade grinding[J]. Journal of Building Materials, 2014, 17(2): 206-211 (in Chinese). [7] XU F, WANG S L, LI T, et al. The mechanical properties and resistance against the coupled deterioration of sulfate attack and freeze-thaw cycles of tailing recycled aggregate concrete[J]. Construction and Building Materials, 2021, 269: 121273. [8] 黄泽轩,侯义辉,宋少民.铁尾矿微粉对混凝土收缩及耐久性能的影响[J].混凝土,2020(5):56-59. HUANG Z X, HOU Y H, SONG S M. Effect of iron tailings powder on shrinkage and durability of concrete[J]. Concrete, 2020(5): 56-59 (in Chinese). [9] 唐 可,毛雪松,徐 旺,等.掺铁尾矿砂细集料的水泥混凝土性能分析[J].工业建筑,2019,49(8):153-157. TANG K, MAO X S, XU W, et al. Performance analysis of cement concrete with iron tailings sand as fine aggregate[J]. Industrial Construction, 2019, 49(8): 153-157 (in Chinese). [10] ZHANG W F, GU X W, QIU J P, et al. Effects of iron ore tailings on the compressive strength and permeability of ultra-high performance concrete[J]. Construction and Building Materials, 2020, 260: 119917. [11] ULLAH S, YANG C, CAO L P, et al. Material design and performance improvement of conductive asphalt concrete incorporating carbon fiber and iron tailings[J]. Construction and Building Materials, 2021, 303: 124446. [12] 柳根金,丁一宁,衡 震.不同导电相对混凝土裂缝智能化自监测的灵敏度与噪声水平的影响[J].复合材料学报,2020,37(10):2610-2618. LIU G J, DING Y N, HENG Z. Influence of conductive materials on the crack sensing sensitivity and noise signal of smart concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2610-2618 (in Chinese). [13] 刘卫森,郭英健,胡 捷,等.碳纤维-碱激发砂浆自感知性能[J].硅酸盐学报,2021,49(7):1510-1518. LIU W S, GUO Y J, HU J, et al. Self-sensing property of carbon fiber-alkali activated mortar[J]. Journal of the Chinese Ceramic Society, 2021, 49(7): 1510-1518 (in Chinese). [14] 刘洪波,李 兴,佟 瑶,等.石墨尾矿碳纤维混凝土电阻率与力学参数的相关性研究[J].黑龙江大学工程学报,2020,11(2):11-15. LIU H B, LI X, TONG Y, et al. Study on the relativity between resistivity and mechanical parameters of carbon fiber reinforced concrete with graphite tailings[J]. Journal of Engineering of Heilongjiang University, 2020, 11(2): 11-15 (in Chinese). [15] DONG W, HUANG Y M, LEHANE B, et al. Mechanical and electrical properties of concrete incorporating an iron-particle contained nano-graphite by-product[J]. Construction and Building Materials, 2021, 270: 121377. [16] 中华人民共和国住房和城乡建设部.普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082—2009[S].北京:中国建筑工业出版社,2009. Ministry of Housing and Urban-Rural Development, PRC. Standard of test method for long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture and Architecture Press, 2009 (in Chinese). [17] 曹东岳.碳纤维混凝土力敏特性及在井壁受力监测中的初步应用[D].徐州:中国矿业大学,2018. CAO D Y. Force sensitive properties of carbon fiber reinforced concrete and its preliminary application in monitoring of shaft lining[D]. Xuzhou: China University of Mining and Technology, 2018 (in Chinese). [18] NALON G H, RIBEIRO J C L, DE ARAU'JO E N D, et al. Effects of different kinds of carbon black nanoparticles on the piezoresistive and mechanical properties of cement-based composites[J]. Journal of Building Engineering, 2020, 32: 101724. [19] 肖前慧,李阳阳,邱继生,等.冻融与硫酸盐侵蚀耦合作用下不同骨料取代率再生混凝土损伤研究[J].地震工程与工程振动,2020,40(4):101-107. XIAO Q H, LI Y Y, QIU J S, et al. Damage of recycled concrete with different aggregate substitution rates under the coupling action of freeze-thaw and sulfate erosion[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(4): 101-107 (in Chinese). [20] 卢佳涛,孔丽娟,樊子瑞,等.铁尾矿砂-地聚物复合材料界面与性能研究[J/OL].建筑材料学报:1-11[2021-12-09].http://kns.cnki.net/kcms/detail/31.1764.TU.20210616.1527.002.html. LU J T, KONG L J, FAN Z R, et al. Study on the interface and properties of iron tailings-geopolymer co-mposites[J/OL]. Journal of Building Materials: 1-11[2021-12-09]. http://kns.cnki.net/kcms/detail/31.1764.TU.20210616.1527.002.html (in Chinese). [21] WANG L N, ASLANI F. Piezoresistivity performance of cementitious composites containing activated carbon powder, nano zinc oxide and carbon fibre[J]. Construction and Building Materials, 2021, 278: 122375. [22] CHOLKER A K, TANTRAY M A. Micro carbon fiber based concrete as a strain-damage sensing material[J]. Materials Today: Proceedings, 2019, 19: 152-157. [23] YIN T J, XU J X, WANG Y, et al. Increasing self-sensing capability of carbon nanotubes cement-based materials by simultaneous addition of Ni nanofibers with low content[J]. Construction and Building Materials, 2020, 254: 119306. [24] 姚 武,王瑞卿.外加电场作用下碳纤维增强水泥基材料的输运特性[J].硅酸盐学报,2008,36(1):73-77. YAO W, WANG R Q. Transport properties of carbon fiber reinforced cement-based composites subjected to external electric field[J]. Journal of the Chinese Ceramic Society, 2008, 36(1): 73-77 (in Chinese). [25] 谭忆秋,刘 凯,王英园.碳纤维/石墨烯导电沥青混凝土的非线性伏安特性[J].建筑材料学报,2019,22(2):278-283. TAN Y Q, LIU K, WANG Y Y. Nonlinear voltammetric characteristics of carbon fiber/graphene conductive asphalt concrete[J]. Journal of Building Materials, 2019, 22(2): 278-283 (in Chinese). [26] DONG W K, LI W G, WANG K J, et al. Piezoresistivity enhancement of functional carbon black filled cement-based sensor using polypropylene fibre[J]. Powder Technology, 2020, 373: 184-194. |