[1] GORBANEV Y, VERVLOESSEM E, NIKIFOROV A, et al. Nitrogen fixation with water vapor by nonequilibrium plasma: toward sustainable ammonia production[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2996-3004. [2] 张 龙,葛建华,徐 静,等.α-Fe2O3/W18O49纳米复合光催化剂的制备及其光催化固氮性能研究[J].功能材料,2021,52(5):5097-5104. ZHANG L, GE J H, XU J, et al. Preparationand of photocatalytic performance in nitrogen fixation of α-Fe2O3/W18O49 nanocomposite[J]. Journal of Functional Materials, 2021, 52(5): 5097-5104 (in Chinese). [3] 张双双,田跃儒.g-C3N4负载磷钨酸及其光催化固氮性能的研究[J].现代化工,2021,41(8):203-207. ZHANG S S, TIAN Y R. Preparation of g-C3N4 loaded phosphotungstic acid and its performance in photocatalytic nitrogen fixation[J]. Modern Chemical Industry, 2021, 41(8): 203-207 (in Chinese). [4] 贺 梅,孙焕运,李士阔.Mo掺杂调控电子结构增强NiS电催化固氮性能[J].无机化学学报,2021,37(7):1211-1217. HE M, SUN H Y, LI S K. Manipulating electronic structure of NiS by Mo doping for boosting electrocatalytic nitrogen fixation[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(7): 1211-1217 (in Chinese). [5] SHEN Z K, YUAN Y J, WANG P, et al. Few-layer black phosphorus nanosheets: a metal-free cocatalyst for photocatalytic nitrogen fixation[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17343-17352. [6] 李 丽,余 愿,孙东峰,等.Ru单原子负载g-C3N4催化剂的制备及其光催化固氮性能研究[J].中国材料进展,2021,40(3):234-240. LI L, YU Y, SUN D F, et al. Ruthenium single atoms supported on graphitic carbon nitride for nitrogen photofixation[J]. Materials China, 2021, 40(3): 234-240 (in Chinese). [7] 杨 松,储悉尼,李文俊,等.Cu重建凹凸棒石原位固载CuO量子点及其宽光谱固氮特性[J].硅酸盐学报,2021,49(10):2070-2077. YANG S, CHU X N, LI W J, et al. In situ growth of CuO quantum dots on Cu-reconstructed palygorskite for wide-spectrum photocatalytic nitrogen fixation[J]. Journal of the Chinese Ceramic Society, 2021, 49(10): 2070-2077 (in Chinese). [8] LIU Q Y, WANG H D, TANG R, et al. Rutile TiO2 nanoparticles with oxygen vacancy for photocatalytic nitrogen fixation[J]. ACS Applied Nano Materials, 2021, 4(9): 8674-8679. [9] 毛成梁,张礼知.基于表面氧空位的光催化固氮材料[J].中国材料进展,2019,38(2):83-90+105. MAO C L, ZHANG L Z. Surface oxygen vacancy based photocatalysts for nitrogen fixation[J]. Materials China, 2019, 38(2): 83-90+105 (in Chinese). [10] FENG Y L, ZHANG Z S, ZHAO K, et al. Photocatalytic nitrogen fixation: oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering[J]. Journal of Colloid and Interface Science, 2021, 583: 499-509. [11] FANG Y, CAO Y, TAN B H, et al. Oxygen and titanium vacancies in a BiOBr/MXene-Ti3C2 composite for boosting photocatalytic N2 fixation[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 42624-42634. [12] HUANG Y C, LI K S, LIN Y, et al. Cover feature: enhanced efficiency of electron-hole separation in Bi2O2CO3 for photocatalysis via acid treatment[J]. ChemCatChem, 2018, 10(9): 1982-1987. [13] 陈晓明,刘丽娜,王星星,等.(Na0.5Bi0.5)0.94Ba0.06TiO3陶瓷的结构及电学性能:点缺陷效应研究进展[J].陕西师范大学学报(自然科学版),2021,49(4):2-29. CHEN X M, LIU L N, WANG X X, et al. An overview of structure and electrical properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics: point defects effect[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2021, 49(4): 2-29 (in Chinese). [14] SAITO W, HAYASHI K, HUANG Z C, et al. Enhancing the thermoelectric performance of Mg2Sn single crystals via point defect engineering and Sb doping[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 57888-57897. [15] ZHANG Y H, DAI R Y, HU S R. Study of the role of oxygen vacancies as active sites in reduced graphene oxide-modified TiO2[J]. Physical Chemistry Chemical Physics, 2017, 19(10): 7307-7315. [16] ZHANG Y H, GUO H X, WENG W, et al. The surface plasmon resonance, thermal, support and size effect induced photocatalytic activity enhancement of Au/reduced graphene oxide for selective oxidation of benzylic alcohols[J]. Physical Chemistry Chemical Physics, 2017, 19(46): 31389-31398. [17] ZHOU H, ZHANG Y H. Efficient thermal- and photocatalysts made of Au nanoparticles on MgAl-layered double hydroxides for energy and environmental applications[J]. Physical Chemistry Chemical Physics, 2019, 21(39): 21798-21805. [18] MA R X, XIE L Y, HUANG Y X, et al. A facile approach to synthesize CdS-attapulgite as a photocatalyst for reduction reactions in water[J]. RSC Advances, 2021, 11(43): 27003-27010. [19] 马瑞霄,周 浩,张燕辉.RGO-ZnO光催化降解抗生素及还原Cr(Ⅵ)的研究[J].工业水处理,2021,41(3):53-56. MA R X, ZHOU H, ZHANG Y H. RGO-ZnO photocatalytic antibiotics degradation and Cr(Ⅵ) reduction[J]. Industrial Water Treatment, 2021, 41(3): 53-56 (in Chinese). [20] 董国文,陈 飘,任国平,等.碳化硼促进Psendomonas stutzeri A1501电催化固氮产氨及机制[J].中国环境科学,2021,41(5):2449-2458. DONG G W, CHEN P, REN G P, et al. Boron carbide promotes the ammonia production by electrocatalytic nitrogen fixation with Psendomonas stutzeri A1501[J]. China Environmental Science, 2021, 41(5): 2449-2458 (in Chinese). [21] LI K, SUN C, CHEN Z Q, et al. Fe-carbon dots enhance the photocatalytic nitrogen fixation activity of TiO2@CN heterojunction[J]. Chemical Engineering Journal, 2022, 429: 132440. [22] 朱晓蓉,李亚飞.二维AuP2材料电催化固氮性能的理论研究[J].化工学报,2020,71(10):4820-4825. ZHU X R, LI Y F. Theoretical study on electrocatalytic nitrogen fixation performance of two-dimensional AuP2[J]. CIESC Journal, 2020, 71(10): 4820-4825 (in Chinese). [23] SCHRAUZER G N, GUTH T D. Photolysis of water and photoreduction of nitrogen on titanium dioxide[J]. Journal of the American Chemical Society, 1977, 99(22): 7189-7193. [24] 高晓明,尚艳岩,刘利波,等.Cd掺杂δ-Bi2O3纳米片的制备及其光催化固氮性能[J].无机化学学报,2019,35(4):580-588. GAO X M, SHANG Y Y, LIU L B, et al. Preparation and photocatalytic nitrogen fixation performance of Cd doping δ-Bi2O3 nanosheets[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(4): 580-588 (in Chinese). [25] WANG J P, LIN W, RAN Y, et al. Nanotubular TiO2 with remedied defects for photocatalytic nitrogen fixation[J]. The Journal of Physical Chemistry C, 2020, 124(2): 1253-1259. [26] HU X L, ZHANG W J, YONG Y W, et al. One-step synthesis of iodine-doped g-C3N4 with enhanced photocatalytic nitrogen fixation performance[J]. Applied Surface Science, 2020, 510: 145413. [27] SHIRAISHI Y, SHIOTA S, KOFUJI Y, et al. Nitrogen fixation with water on carbon-nitride-based metal-free photocatalysts with 0.1% solar-to-ammonia energy conversion efficiency[J]. ACS Applied Energy Materials, 2018, 1(8): 4169-4177. [28] 赵海涛,陈 欢,江 芳.氧化铟掺杂的氧化镓光催化固氮性能研究[J].环境科学学报,2017,37(8):2989-2995. ZHAO H T, CHEN H, JIANG F. Investigation of nitrogen photofixation performance of In2O3-doped Ga2O3[J]. Acta Scientiae Circumstantiae, 2017, 37(8): 2989-2995 (in Chinese). [29] HU X L, YONG Y W, XU Y, et al. Enhanced photocatalytic nitrogen fixation of AgI modified g-C3N4 with nitrogen vacancy synthesized by an in situ decomposition-thermal polymerization method[J]. Applied Surface Science, 2020, 531: 147348. [30] LI H, SHANG J, AI Z H, et al. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed{001}facets[J]. Journal of the American Chemical Society, 2015, 137(19): 6393-6399. [31] WANG B H, SUN B, CHEN L, et al. Photocatalytic nitrogen reduction reaction over two-dimensional Cs3Bi2Br9-CdS van der waals heterostructures by external control strategies[J]. The Journal of Physical Chemistry C, 2021, 125(24): 13212-13224. [32] LI F R, WANG T, LI Y J, et al. Heteropoly blue/protonation-defective graphitic carbon nitride heterojunction for the photo-driven nitrogen reduction reaction[J]. Inorganic Chemistry, 2021, 60(8): 5829-5839. [33] WANG H M, ZHAO R, QIN J Q, et al. MIL-100(Fe)/Ti3C2 MXene as a Schottky catalyst with enhanced photocatalytic oxidation for nitrogen fixation activities[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44249-44262. [34] LI Y S, TI M R, ZHAO D X, et al. Facile synthesis of nitrogen-vacancy pothole-rich few-layer g-C3N4 for photocatalytic nitrogen fixation into nitrate and ammonia[J]. Journal of Alloys and Compounds, 2021, 870: 159298. [35] 陈 琦,周 煜,朱继秀,等.富表面氧空位Fe2O3/ZnO催化剂在光催化合成氨中的应用[J].无机化学学报,2020,36(3):426-434. CHEN Q, ZHOU Y, ZHU J X, et al. Photocatalytic synthesis of ammonia over Fe2O3/ZnO with rich surface oxygen vacancy[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(3): 426-434 (in Chinese). [36] LI P S, ZHOU Z A, WANG Q, et al. Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies[J]. Journal of the American Chemical Society, 2020, 142(28): 12430-12439. [37] LI G, YANG W Y, GAO S, et al. Creation of rich oxygen vacancies in bismuth molybdate nanosheets to boost the photocatalytic nitrogen fixation performance under visible light illumination[J]. Chemical Engineering Journal, 2021, 404: 127115. [38] HUANG Y C, LONG B, TANG M N, et al. Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation[J]. Applied Catalysis B: Environmental, 2016, 181: 779-787. [39] SONG M Y, WANG L J, LI J X, et al. Defect density modulation of La2TiO5: an effective method to suppress electron-hole recombination and improve photocatalytic nitrogen fixation[J]. Journal of Colloid and Interface Science, 2021, 602: 748-755. [40] LIU L, LIU J Q, SUN K L, et al. Novel phosphorus-doped Bi2WO6 monolayer with oxygen vacancies for superior photocatalytic water detoxication and nitrogen fixation performance[J]. Chemical Engineering Journal, 2021, 411: 128629. [41] ZENG H, LIU L L, ZHANG D T, et al. Fe(III)-C3N4 hybrids photocatalyst for efficient visible-light driven nitrogen fixation[J]. Materials Chemistry and Physics, 2021, 258: 123830. [42] REN C J, ZHANG Y L, LI Y L, et al. Whether corrugated or planar vacancy graphene-like carbon nitride (g-C3N4) is more effective for nitrogen reduction reaction?[J]. The Journal of Physical Chemistry C, 2019, 123(28): 17296-17305. [43] ZHAO Z M, LONG Y, LUO S, et al. Metal-free C3N4 with plentiful nitrogen vacancy and increased specific surface area for electrocatalytic nitrogen reduction[J]. Journal of Energy Chemistry, 2021, 60: 546-555. [44] XUE Y J, KONG X K, GUO Y C, et al. Synthesis of porous few-layer carbon nitride with excellent photocatalytic nitrogen fixation[J]. Journal of Materiomics, 2020, 6(1): 128-137. [45] LIANG C, NIU H Y, GUO H, et al. Insight into photocatalytic nitrogen fixation on graphitic carbon nitride: defect-dopant strategy of nitrogen defect and boron dopant[J]. Chemical Engineering Journal, 2020, 396: 125395. [46] CHENG C C, WANG J N, GUO X S, et al. Thermal-assisted photocatalytic H2 production over sulfur vacancy-rich Co0.85Se/Mn0.3Cd0.7S nanorods under visible light[J]. Applied Surface Science, 2021, 557: 149812. [47] LI C, XU R Z, MA S X, et al. Sulfur vacancies in ultrathin cobalt sulfide nanoflowers enable boosted electrocatalytic activity of nitrogen reduction reaction[J]. Chemical Engineering Journal, 2021, 415: 129018. [48] ZHOU C, ZHU L, DENG L, et al. Efficient activation of peroxymonosulfate on CuS@MIL-101(Fe) spheres featured with abundant sulfur vacancies for coumarin degradation: performance and mechanisms[J]. Separation and Purification Technology, 2021, 276: 119404. [49] SUN B T, LIANG Z Q, QIAN Y Y, et al. Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7257-7269. [50] HU S Z, LI Y M, LI F Y, et al. Construction of g-C3N4/Zn0.11Sn0.12Cd0.88S1.12 hybrid heterojunction catalyst with outstanding nitrogen photofixation performance induced by sulfur vacancies[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2269-2278. |