[1] 丁 慧,孙秀丽,刘文化,等.固化疏浚淤泥作路基材料工程特性试验研究[J].土木建筑与环境工程,2017,39(2):11-18. DING H, SUN X L, LIU W H, et al. Experimental analysis of engineering properties of solidified sludge as roadbed filling material[J]. Journal of Civil, Architectural & Environmental Engineering, 2017, 39(2): 11-18 (in Chinese). [2] 汤怡新,刘汉龙,朱 伟.水泥固化土工程特性试验研究[J].岩土工程学报,2000,22(5):549-554. TANG Y X, LIU H L, ZHU W. Study on engineering properties of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 549-554 (in Chinese). [3] 贾尚华,申向东,解国梁.石灰-水泥复合土增强机制研究[J].岩土力学,2011,32(s1):382-387. JIA S H, SHEN X D, XIE G L. Reinforecment mechanism of lime-cement soil[J]. Rock and Soil Mechanics, 2011, 32(s1): 382-387 (in Chinese). [4] 杨爱武,杜东菊,赵瑞斌,等.水泥及其外加剂固化天津海积软土的试验研究[J].岩土力学,2007,28(9):1823-1827. YANG A W, DU D J, ZHAO R B, et al. Experimental study on cement and its additional agent to cure Tianjin marine soft soil[J]. Rock and Soil Mechanics, 2007, 28(9): 1823-1827 (in Chinese). [5] POURAKBAR S, HUAT B B K. Laboratory-scale model of reinforced alkali-activated agro-waste for clayey soil stabilization[J]. Advances in Civil Engineering Materials, 2017, 6(1): 20160023. [6] 李芳菲,华 渊,刘文化,等.干湿循环条件下水泥固化疏浚淤泥的物理力学特性[J].硅酸盐通报,2019,38(2):344-350. LI F F, HUA Y, LIU W H, et al. Physico-mechanical characteristics of cement-solidified dredged sludge under drying and wetting cycle[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 344-350 (in Chinese). [7] 秦 川,刘松玉,杜广印,等.淤泥质土的整体碳化固化模型试验研究[J].工程地质学报,2019,27(6):1302-1310. QIN C, LIU S Y, DU G Y, et al. Model tests on mass carbonation stabilization of mucky soil[J]. Journal of Engineering Geology, 2019, 27(6): 1302-1310 (in Chinese). [8] MCLELLAN B C, WILLIAMS R P, LAY J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement[J]. Journal of Cleaner Production, 2011, 19(9/10): 1080-1090. [9] 田 亮,姚 晓,董 洁,等.矿渣碱激发胶凝材料固化盐渍土试验研究[J].混凝土与水泥制品,2018(9):98-101. TIAN L, YAO X, DONG J, et al. Experimental study on solidification of saline soil using alkali-activated slag materials[J]. China Concrete and Cement Products, 2018(9): 98-101 (in Chinese). [10] 黄煜镔,张 凯,周静静,等.流化床燃煤固硫灰固化淤泥质土路用性能研究[J].应用基础与工程科学学报,2019,27(2):375-383. HUANG Y B, ZHANG K, ZHOU J J, et al. Experiment study on the road performances of muddy soil cured by fluidized bed combustion ashes[J]. Journal of Basic Science and Engineering, 2019, 27(2): 375-383 (in Chinese). [11] 乔京生,王旭影,王冠泓,等.粒化高炉矿渣微粉固化淤泥质土的动力特性及微观机理[J].硅酸盐通报,2021,40(7):2306-2312. QIAO J S, WANG X Y, WANG G H, et al. Dynamic characteristics and microscopic mechanism of muddy clay solidified by ground granulated blast-furnace slag[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2306-2312 (in Chinese). [12] 吴 俊,征西遥,杨爱武,等.矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J].岩土力学,2021,42(3):647-655. WU J, ZHENG X Y, YANG A W, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655 (in Chinese). [13] 孙秀丽,童 琦,刘文化,等.碱激发粉煤灰和矿粉改性疏浚淤泥力学特性及显微结构研究[J].大连理工大学学报,2017,57(6):622-628. SUN X L, TONG Q, LIU W H, et al. Study of microstructure and mechanical properties of dredged silt solidified using fly ash and slag stimulated by alkali[J]. Journal of Dalian University of Technology, 2017, 57(6): 622-628 (in Chinese). [14] PHETCHUAY C, HORPIBULSUK S, ARULRAJAH A, et al. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer[J]. Applied Clay Science, 2016, 127/128: 134-142. [15] ARULRAJAH A, MOHAMMADINIA A, D’AMICO A, et al. Cement kiln dust and fly ash blends as an alternative binder for the stabilization of demolition aggregates[J]. Construction and Building Materials, 2017, 145: 218-225. [16] ELKHEBU A, ZAINORABIDIN A, HJ BAKAR I, et al. Alkaline activation of clayey soil using potassium hydroxide & fly ash[J]. International Journal of Integrated Engineering, 2018, 10(9): 99-104. [17] LATIFI N, VAHEDIFARD F, SIDDIQUA S, et al. Solidification-stabilization of heavy metal-contaminated clays using gypsum: multiscale assessment[J]. International Journal of Geomechanics, 2018, 18(11): 04018150. [18] MUHAMMAD N, SIDDIQUA S, LATIFI N. Solidification of subgrade materials using magnesium alkalinization: a sustainable additive for construction[J]. Journal of Materials in Civil Engineering, 2018, 30(10): 04018260. [19] 徐 杨.城市河道淤泥特性及其资源化利用技术研究[D].南京:南京大学,2015:40-43. XU Y. Geotechnical characterization and beneficial utilization of urban river sediments[D]. Nanjing: Nanjing University, 2015: 40-43 (in Chinese). [20] KUMAR S, KUMAR R, MEHROTRA S P. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer[J]. Journal of Materials Science, 2010, 45(3): 607-615. [21] ISMAIL I, BERNAL S A, PROVIS J L, et al. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cement and Concrete Composites, 2014, 45: 125-135. [22] KAZEMIAN A, GHOLIZADEH VAYGHAN A, RAJABIPOUR F. Quantitative assessment of parameters that affect strength development in alkali activated fly ash binders[J]. Construction and Building Materials, 2015, 93: 869-876. [23] 崔宏环,刘卫涛,张立群.土凝岩新型固化剂稳定路基粉质黏土的干缩性能[J].科学技术与工程,2019,19(14):320-328. CUI H H, LIU W T, ZHANG L Q. Dry shrinkage properties of silty clay stabilized by new solidifying agent of soil tuff[J]. Science Technology and Engineering, 2019, 19(14): 320-328 (in Chinese). [24] 杜衍庆,王新岐.滨海淤泥固化土路用性能试验研究[J].天津建设科技,2019,29(1):1-5. DU Y Q, WANG X Q. Experimental study on road performance of coastal mud solidified soil[J]. Tianjin Construction Science and Technology, 2019, 29(1): 1-5 (in Chinese). [25] 商晓儒.水泥稳定建筑垃圾路面基层的技术性能研究[D].西安:长安大学,2019:77-79. SHANG X R. Research on technical performance of cement stabilized construction waste pavement base[D]. Xi’an: Chang’an University, 2019: 77-79 (in Chinese). [26] 柯 睿,汪洪星,谈云志,等.冻融循环对固化淤泥土力学性质的影响[J].长江科学院院报,2019,36(8):136-139+145. KE R, WANG H X, TAN Y Z, et al. Effect of freeze-thaw cycle on mechanical properties of solidified silt[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 136-139+145 (in Chinese). [27] REDDY M S, DINAKAR P, RAO B H. Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete[J]. Journal of Building Engineering, 2018, 20: 712-722. [28] 孙海超,王文军,凌道盛.低掺量水泥固化土的力学特性及微观结构[J].浙江大学学报(工学版),2021,55(3):530-538. SUN H C, WANG W J, LING D S. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(3): 530-538 (in Chinese). [29] 王东星,王宏伟,邹维列,等.碱激发粉煤灰固化淤泥微观机制研究[J].岩石力学与工程学报,2019,38(s1):3197-3205. WANG D X, WANG H W, ZOU W L, et al. Research on micro-mechanisms of dredged sludge solidified with alkali-activated fly ash[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(s1): 3197-3205 (in Chinese). [30] 何 俊,王小琦,石小康,等.碱渣-矿渣固化淤泥的无侧限抗压强度与微观特征[J].应用基础与工程科学学报,2021,29(2):376-386. HE J, WANG X Q, SHI X K, et al. Unconfined compressive strength and microscopic characteristics of soft soil solidified with soda residue and ground granulated blast furnace slag[J]. Journal of Basic Science and Engineering, 2021, 29(2): 376-386 (in Chinese). [31] WANG D X, GAO X Y, LIU X Q, et al. Strength, durability and microstructure of granulated blast furnace slag-modified magnesium oxychloride cement solidified waste sludge[J]. Journal of Cleaner Production, 2021, 292: 126072. [32] WANG D X, DI S J, GAO X Y, et al. Strength properties and associated mechanisms of magnesium oxychloride cement-solidified urban river sludge[J]. Construction and Building Materials, 2020, 250: 118933. [33] 杨爱武,王 韬,许再良.石灰及其外加剂固化天津滨海软土的试验研究[J].工程地质学报,2015,23(5):996-1004. YANG A W, WANG T, XU Z L. Experimental study on lime and its additional agent to cure Tianjin marine soft soil[J]. Journal of Engineering Geology, 2015, 23(5): 996-1004 (in Chinese). |