[1] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35(2): 429-441. [2] SOFI M, VAN DEVENTER J S J, MENDIS P A, et al. Engineering properties of inorganic polymer concretes (IPCs)[J]. Cement and Concrete Research, 2007, 37(2): 251-257. [3] RASHAD A M, ZEEDAN S R, HASSAN A A. Influence of the activator concentration of sodium silicate on the thermal properties of alkali-activated slag pastes[J]. Construction and Building Materials, 2016, 102: 811-820. [4] BAKHAREV T. Resistance of geopolymer materials to acid attack[J]. Cement and Concrete Research, 2005, 35(4): 658-670. [5] BAKHAREV T. Durability of geopolymer materials in sodium and magnesium sulfate solutions[J]. Cement and Concrete Research, 2005, 35(6): 1233-1246. [6] 葛利杰,杨鼎宜,李 浩,等.镍渣综合利用技术综述[J].江苏建材,2015(4):6-9. GE L J, YANG D Y, LI H, et al. The technical summary of comprehensive utilization of nickel slag[J]. Jiangsu Building Materials, 2015(4): 6-9 (in Chinese). [7] 李国洲,张燕云,马泳波,等.镍冶金渣综合利用现状[J].中国冶金,2017,27(8):1-5. LI G Z, ZHANG Y Y, MA Y B, et al. Comprehensive utilization of nickel metallurgical residue[J]. China Metallurgy, 2017, 27(8): 1-5 (in Chinese). [8] 张祥成,孟永彪.浅析中国粉煤灰的综合利用现状[J].无机盐工业,2020,52(2):1-5. ZHANG X C, MENG Y B. Brief analysis on present situation of comprehensive utilization of fly ash in China[J]. Inorganic Chemicals Industry, 2020, 52(2): 1-5 (in Chinese). [9] 管柏伦,郭荣鑫,齐荣庆,等.偏高岭土-粉煤灰基地聚物砂浆力学性能研究[J].硅酸盐通报,2021,40(4):1250-1257. GUAN B L, GUO R X, QI R Q, et al. Mechanical properties of geopolymer mortar based on metakaolin and fly ash[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1250-1257 (in Chinese). [10] DUXSON P, PROVIS J L, LUKEY G C, et al. Understanding the relationship between geopolymer composition, microstructure and mechanical properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269(1/2/3): 47-58. [11] 陶 涛,杨建明,李 涛,等.偏高岭土和粉煤灰对大流动性磷酸钾镁水泥抗盐冻性能的影响[J].混凝土,2021(4):87-90+95. TAO T, YANG J M, LI T, et al. Effect of fly ash and metakaolin on salt-frost resistance of high fluidity magnesium potassium phosphate cement[J]. Concrete, 2021(4): 87-90+95 (in Chinese). [12] PALOMO A, GRUTZECK M W, BLANCO M T. Alkali-activated fly ashes: a cement for the future[J]. Cement and Concrete Research, 1999, 29(8): 1323-1329. [13] ZHANG Z, ZHU Y C, YANG T, et al. Conversion of local industrial wastes into greener cement through geopolymer technology: a case study of high-magnesium nickel slag[J]. Journal of Cleaner Production, 2017, 141: 463-471. [14] YANG T, ZHANG Z H, ZHU H J, et al. Re-examining the suitability of high magnesium nickel slag as precursors for alkali-activated materials[J]. Construction and Building Materials, 2019, 213: 109-120. [15] YANG T, WU Q S, ZHU H J, et al. Geopolymer with improved thermal stability by incorporating high-magnesium nickel slag[J]. Construction and Building Materials, 2017, 155: 475-484. [16] WU Q S, WANG S X, YANG T, et al. Effect of high-magnesium nickel slag on hydration characteristics of Portland cement[J]. Journal of Materials in Civil Engineering, 2019, 31(5): 04019051. [17] 刘 洋,吴锦绣,封春甫,等.富镁镍渣-粉煤灰基地质聚合物的制备与性能表征[J].硅酸盐通报,2021,40(3):921-928. LIU Y, WU J X, FENG C F, et al. Preparation and performance characterization of magnesium-rich nickel slag-fly ash-based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 921-928 (in Chinese). [18] LV Q F, WANG Z S, GU L Y, et al. Effect of sodium sulfate on strength and microstructure of alkali-activated fly ash based geopolymer[J]. Journal of Central South University, 2020, 27(6): 1691-1702. [19] 王灿强.碱激发镍渣-粉煤灰—炉渣胶凝材料的制备研究[D].福州:福州大学,2017. WANG C Q. Study on preparation of alkali-activated nickel slag-fly ash-incineration slag cementitious material[D]. Fuzhou: Fuzhou University, 2017 (in Chinese). [20] 刘 云.粉煤灰-镍铁渣地质聚合物的制备及其性能研究[D].济南:济南大学,2017. LIU Y. Preparation and properties of fly ash-ferronickel slag geopolymer[D]. Jinan: University of Jinan, 2017 (in Chinese). |