硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (2): 376-389.
屈孟娇1,2, 田青1,2, 张苗1,2, 祁帅1,2, 姚田帅1,2, 许鸽龙1,2, 蔡基伟1,2
收稿日期:
2021-08-02
修回日期:
2021-09-27
出版日期:
2022-02-15
发布日期:
2022-03-01
通讯作者:
田 青,副教授。E-mail:tqkele@126.com
作者简介:
屈孟娇(1989—),女,硕士研究生。主要从事高性能混凝土以及混凝土结构耐久性方面的研究。E-mail:13137560593@163.com
基金资助:
QU Mengjiao1,2, TIAN Qing1,2, ZHANG Miao1,2, QI Shuai1,2, YAO Tianshuai1,2, XU Gelong1,2, CAI Jiwei1,2
Received:
2021-08-02
Revised:
2021-09-27
Online:
2022-02-15
Published:
2022-03-01
摘要: 火山灰质材料的高效、合理利用是实现混凝土环境友好与高性能的重要途径,而科学、准确评价火山灰质材料的活性发挥程度则是提高其综合应用效果的关键之一。通过对国内外文献的研读分析,概述了化学试验法、物理试验法、微观结构分析法与动力学模型法等火山灰质材料的主要活性评价方法,并对各种评价方法的理论依据及适用特点进行了讨论分析,最后探讨了当前火山灰质材料活性评价方法存在的不足之处,旨在为火山灰质材料的高效利用与深入研究提供借鉴与参考。
中图分类号:
屈孟娇, 田青, 张苗, 祁帅, 姚田帅, 许鸽龙, 蔡基伟. 火山灰质材料活性评价方法研究综述[J]. 硅酸盐通报, 2022, 41(2): 376-389.
QU Mengjiao, TIAN Qing, ZHANG Miao, QI Shuai, YAO Tianshuai, XU Gelong, CAI Jiwei. Review on Activity Evaluation Methods of Pozzolan Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(2): 376-389.
[1] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999. WU Z W, LIAN H Z. High performance concrete[M]. Beijing: China Railway Press, 1999 (in Chinese). [2] FAN D Q, YU R, SHUI Z H, et al. A novel approach for developing a green ultra-high performance concrete (UHPC) with advanced particles packing meso-structure[J]. Construction and Building Materials, 2020, 265: 120339. [3] JIANG J Y, ZHOU W J, CHU H Y, et al. Design of eco-friendly ultra-high performance concrete with supplementary cementitious materials and coarse aggregate[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2019, 34(6): 1350-1359. [4] 丑 凯.超高性能混凝土堆积密实度和火山灰效应量化研究[D].长沙:湖南大学,2010. CHOU K. Quantitative analysis on packing density and pozzolanic effect of ultra-high performance concrete[D]. Changsha: Hunan University, 2010 (in Chinese). [5] 廉慧珍,张志龄,王英华.火山灰质材料活性的快速评定方法[J].建筑材料学报,2001,4(3):299-304. LIAN H Z, ZHANG Z L, WANG Y H. Rapid evaluation on activity of pozzolanic materials[J]. Journal of Building Materials, 2001, 4(3): 299-304 (in Chinese). [6] ASTM. ASTMC-125 standard terminology relating to concrete and concrete aggregates[S]. US: ASTM, 2007. [7] TAYLOR H F W. Cement chemistry[M]. London: Thomas Telford Publishing, 1997. [8] 李 立,关青锋,刘金国,等.肯尼亚天然火山灰质材料对水泥水化性能的影响[J].混凝土,2020(11):83-88. LI L, GUAN Q F, LIU J G, et al. Influence of natural pozzolanic materials in Kenya on hydration process of cement[J]. Concrete, 2020(11): 83-88 (in Chinese). [9] SHI Y, LONG G C, MA C, et al. Design and preparation of ultra-high performance concrete with low environmental impact[J]. Journal of Cleaner Production, 2019, 214: 633-643. [10] 余 强,曾俊杰,范志宏,等.偏高岭土和硅灰对混凝土性能影响的对比分析[J].硅酸盐通报,2014,33(12):3134-3139. YU Q, ZENG J J, FAN Z H, et al. Comparative analysis on influence of metakaolin and silica fume on concrete[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(12): 3134-3139 (in Chinese). [11] 蒋春园,余 睿,马东华,等.复合火山灰材料对超高性能混凝土性能与微观结构的物理化学效应[J].硅酸盐通报,2019,38(4):1102-1107. JIANG C Y, YU R, MA D H, et al. Physical and chemical influences of compounded pozzolanic material on the properties and microstructure development of ultra-high performance concrete (UHRC)[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 1102-1107 (in Chinese). [12] 夏京亮,高 波,周永祥,等.非洲天然火山灰混凝土抗氯离子渗透性能改善研究[J].混凝土,2017(11):19-22+26. XIA J L, GAO B, ZHOU Y X, et al. Improve of compound mineral admixture on African natural pozzolan concrete resistance to chloride ion permeability[J]. Concrete, 2017(11): 19-22+26 (in Chinese). [13] 赵 明.新疆和田地区磨细天然火山灰岩在水泥混凝土中应用的可行性研究[D].乌鲁木齐:新疆农业大学,2015. ZHAO M. The feasibility study of the application of the ground natural volcanic ash in cement concrete in the region of Hotan Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2015 (in Chinese). [14] MEHTA A, SIDDIQUE R. An overview of geopolymers derived from industrial by-products[J]. Construction and Building Materials, 2016, 127: 183-198. [15] 阎培渝,张庆欢.含粉煤灰或石英粉复合胶凝材料的抗压强度发展规律[J].硅酸盐学报,2007,35(3):263-267. YAN P Y, ZHANG Q H. Compressive strength development of complex binder containing fly ash or quartz powder[J]. Journal of the Chinese Ceramic Society, 2007, 35(3): 263-267 (in Chinese). [16] 王慧慧,商涛平,龙广成,等.UHPC抗压强度与组成参数之间的关系模型研究[J].铁道科学与工程学报,2020,17(11):2816-2822. WANG H H, SHANG T P, LONG G C, et al. Study on relationship between compressive strength and composition parameters of UHPC[J]. Journal of Railway Science and Engineering, 2020, 17(11): 2816-2822 (in Chinese). [17] 曹永丹,李彦鑫,张金山,等.细度和煅烧温度对煤矸石火山灰活性及微观结构的影响[J].硅酸盐学报,2017,45(8):1153-1158. CAO Y D, LI Y X, ZHANG J S, et al. Effects of calcination temperature and particle size on pozzolanic activity and microstructure of coal gangue[J]. Journal of the Chinese Ceramic Society, 2017, 45(8): 1153-1158 (in Chinese). [18] 李长明,张婷婷,王立久.砒砂岩火山灰活性及碱激发改性[J].硅酸盐学报,2015,43(8):1090-1098. LI C M, ZHANG T T, WANG L J. Pozzolanic activity of pisha sandstone and mechanical properties of alkali-activated pisha sandstone materials[J]. Journal of the Chinese Ceramic Society, 2015, 43(8): 1090-1098 (in Chinese). [19] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.用于水泥中的火山灰质混合材料:GB/T 2847—2005[S].北京:中国标准出版社,2006. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Volcanic ash mixture materials for cement: GB/T 2847—2005[S]. Beijing: Standards Press of China, 2006 (in Chinese). [20] 张思宇,黄少文.火山灰活性评价方法及其影响因素[J].材料导报,2011,25(15):104-106+113. ZHANG S Y, HUANG S W. Evaluation methods and influence factors of pozzolanic activity[J]. Materials Review, 2011, 25(15): 104-106+113 (in Chinese). [21] 张长森.低温烧煤矸石的火山灰活性研究[J].硅酸盐通报,2004,23(5):112-115. ZHANG C S. Sdndy on pozzolanic activity of burned coal gangue[J]. Bulletin of the Chinese Ceramic Society, 2004, 23(5): 112-115 (in Chinese). [22] BADOGIANNIS E, KAKALI G, TSIVILIS S. Metakaolin as supplementary cementitious material[J]. Journal of Thermal Analysis and Calorimetry, 2005, 81(2): 457-462. [23] 黄 阳,黄 艳,向香源,等.高炉渣超细粉火山灰活性评价方法研究[J].混凝土与水泥制品,2018(9):108-112. HUANG Y, HUANG Y, XIANG X Y, et al. Study on assessment method of pozzolanic activity of blast furnace slag superfine powders[J]. China Concrete and Cement Products, 2018(9): 108-112 (in Chinese). [24] TIRONI A, TREZZA M A, SCIAN A N, et al. Kaolinitic calcined clays: factors affecting its performance as pozzolans[J]. Construction and Building Materials, 2012, 28(1): 276-281. [25] 丁一宁,董惠文,曹明莉.陶瓷废弃物粉末火山灰活性的研究[J].建筑材料学报,2015,18(5):867-872. DING Y N, DONG H W, CAO M L. Study on pozzolanic activity of ceramic waste powder[J]. Journal of Building Materials, 2015, 18(5): 867-872 (in Chinese). [26] 高琼英,张智强.高岭石矿物高温相变过程及其火山灰活性[J].硅酸盐学报,1989,17(6):541-548. GAO Q Y, ZHANG Z Q. Study on the structural change in the calcination process of kaolinite and its pozzolanic activity[J]. Journal of the Chinese Ceramic Society, 1989, 17(6): 541-548 (in Chinese). [27] 孙 涛,陈洁渝,周春宇,等.煅烧高岭土的比表面积与吸油性能[J].硅酸盐学报,2013,41(5):685-690. SUN T, CHEN J Y, ZHOU C Y, et al. Specific surface area and oil adsorption of calcinated kaolin clay[J]. Journal of the Chinese Ceramic Society, 2013, 41(5): 685-690 (in Chinese). [28] 王玉飞.高岭土酸碱改性的过程分析及吸油性能研究[D].呼和浩特:内蒙古工业大学,2010. WANG Y F. Study on process analysis and oil absorptive properties of kaolin modified by acid and alkali[D]. Hohhot: Inner Mongolia University of Tehchnology, 2010 (in Chinese). [29] DONATELLO S, TYRER M, CHEESEMAN C R. Comparison of test methods to assess pozzolanic activity[J]. Cement and Concrete Composites, 2010, 32(2): 121-127. [30] DE LUXÁN M P, SORIA F. Study and critical review of the pozzolanity test[J]. Cement and Concrete Research, 1975, 5(5): 461-479. [31] 国分山田.粉煤灰水泥第六届国际水泥化学会议论文集[C].2006(3). YAMADA G F. Papers of the 6th international conference on fly ash cement chemistry[C]. 2006(3) (in Chinese). [32] MORAN W T, GILLIAND J L. Summary of methods for determining pozzolanic activity[J]. ASTM International, 1950: 109-130. [33] 袁润章,朱颉安,章丽云.评定粉煤灰的火山灰活性方法的研究[J].武汉建材学院学报,1982,4(2):169-177. YUAN R Z, ZHU J A, ZHANG L Y. Investigation on evaluating method of pozzolanic reactivity of fly ash[J]. Journal of Wuhan University of Technology, 1982, 4(2): 169-177 (in Chinese). [34] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.工业循环冷却水和锅炉用水中硅的测定:GB/T 12149—2007[S].北京:中国标准出版社,2008. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Determination of silicon in industrial circulating cooling water and boiler water: GB/T 12149—2007[S]. Beijing: Standards Press of China, 2008 (in Chinese). [35] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.煤灰成分分析方法:GB/T 1574—2007[S].北京:中国标准出版社,2008. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Coal ash composition analysis method: GB/T 1574—2007[S]. Beijing: Standards Press of China, 2008 (in Chinese). [36] GUO C B, ZHAO L, YANG J L, et al. A novel perspective process for alumina extraction from coal fly ash via potassium pyrosulfate calcination activation method[J]. Journal of Cleaner Production, 2020, 271: 122703. [37] 贾耀东,阎培渝.粉煤灰中SiO2在不同碱性条件下的溶出量及与火山灰活性指数的关系[J].硅酸盐学报,2009,37(7):1073+1075-1078. JIA Y D, YAN P Y. Soluble SiO2 content in fly ash under different alkali conditions and the relationship between the concentration and pozzolanic activity index of fly ash[J]. Journal of the Chinese Ceramic Society, 2009, 37(7): 1073+1075-1078 (in Chinese). [38] 魏存弟,马鸿文,杨殿范,等.煅烧煤系高岭石高温相变特征及火山灰活性研究[J].硅酸盐通报,2005,24(2):13-16. WEI C D, MA H W, YANG D F, et al. Study on phase transformation of calcined coal kaolinite and activity of volcanic ash[J]. Bulletin of the Chinese Ceramic Society, 2005, 24(2): 13-16 (in Chinese). [39] 郭丽君,李 超,赵 亮,等.煤矸石的机械-热复合活化研究[J].应用化工,2018,47(8):1800-1802. GUO L J, LI C, ZHAO L, et al. Research on the mechanical and thermal activation of coal gangue[J]. Applied Chemical Industry, 2018, 47(8): 1800-1802 (in Chinese). [40] 郑娟荣,孙恒虎,刘轶男.尾砂的火山灰活性及其快速检测方法研究[J].中国矿业大学学报,2000,29(5):472-475 ZHENG J R, SUN H H, LIU Y N. Study on volcanic reactivity of tailings and its fast determination method[J]. Journal of China University of Mining & Technology, 2000, 29(5): 472-475 (in Chinese) [41] 王浩林,李金洪,侯 磊,等.硅藻土的火山灰活性研究[J].硅酸盐通报,2011,30(1):19-24+49. WANG H L, LI J H, HOU L, et al. Study on the pozzolanic activity of diatomite[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(1): 19-24+49 (in Chinese). [42] 郭 伟,李东旭,陈建华,等.煤矸石火山灰活性的快速评价方法[J].硅酸盐学报,2007,35(4):489-494. GUO W, LI D X, CHEN J H, et al. Rapid evaluation method of the pozzolanic reactive activity of coal gangue[J]. Journal of the Chinese Ceramic Society, 2007, 35(4): 489-494 (in Chinese). [43] 肖勇丽,王 智,万 煜,等.粉煤灰活性率的微波改进测定方法研究[J].粉煤灰综合利用,2008,21(5):10-12. XIAO Y L, WANG Z, WAN Y, et al. Improvement on activity ratio determination method of fly ash by microwave[J]. Fly Ash Comprehensive Utilization, 2008, 21(5): 10-12 (in Chinese). [44] 吕 鹏,翟建平,李 琴,等.矿物掺合料火山灰活性的研究[J].建筑材料学报,2005,8(3):289-293. LU P, ZHAI J P, LI Q, et al. Study on the pozzolanic activities of mineral additives[J]. Journal of Building Materials, 2005, 8(3): 289-293 (in Chinese). [45] 钟惟亮,范立峰.天然黏土火山灰活性试验研究[J].硅酸盐通报,2020,39(7):2196-2203. ZHONG W L, FAN L F. Investigation on pozzolanic activity of natural clay[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2196-2203 (in Chinese). [46] YU Q J, SAWAYAMA K, SUGITA S, et al. The reaction between rice husk ash and Ca(OH)2 solution and the nature of its product[J]. Cement and Concrete Research, 1999, 29(1): 37-43. [47] PAYÁ J, BORRACHERO M V, MONZÓ J, et al. Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity[J]. Cement and Concrete Research, 2001, 31(1): 41-49. [48] 廖宜顺,徐鹏飞,杨华美,等.基于电阻率法研究铝酸盐水泥的早期水化过程[J].硅酸盐学报,2018,46(5):657-661. LIAO Y S, XU P F, YANG H M, et al. Hydration process of calcium aluminate cement at early age investigated by electrical resistivity method[J]. Journal of the Chinese Ceramic Society, 2018, 46(5): 657-661 (in Chinese). [49] 魏小胜,肖莲珍,李宗津.采用电阻率法研究水泥水化过程[J].硅酸盐学报,2004,32(1):34-38. WEI X S, XIAO L Z, LI Z J. Study on hydration of Portland cement using an electrical resistivity method[J]. Journal of the Chinese Ceramic Society, 2004, 32(1): 34-38 (in Chinese). [50] 肖莲珍,李宗津,魏小胜.用电阻率法研究新拌混凝土的早期凝结和硬化[J].硅酸盐学报,2005,33(10):1271-1275 XIAO L Z, LI Z J, WEI X S. Early setting and hardening process of young concrete using the resistivity measurement[J]. Journal of the Chinese Ceramic Society, 2005, 33(10): 1271-1275 (in Chinese) [51] AZEVEDO B P, SAVASTANO H, MELO N A A. Characterization and pozzolanic properties of sewage sludge ashes (SSA) by electrical conductivity[J]. Cement and Concrete Composites, 2019, 104: 103410. [52] SNELLINGS R, SCRIVENER K L. Rapid screening tests for supplementary cementitious materials: past and future[J]. Materials and Structures, 2016, 49(8): 3265-3279. [53] 魏小胜,肖莲珍.电阻率法测定硅酸盐水泥水化活化能[J].硅酸盐学报,2011,39(4):676-681. WEI X S, XIAO L Z. Activation energy of Portland cement hydration by electrical resistivity measurement[J]. Journal of the Chinese Ceramic Society, 2011, 39(4): 676-681 (in Chinese). [54] 毛意中,黄少文,罗 琦,等.火山灰质材料火山灰活性检验方法的研究[J].非金属矿,2016,39(3):4-6. MAO Y Z, HUANG S W, LUO Q, et al. Study on evaluation methods of pozzolanic activity of pozzolanic materials[J]. Non-Metallic Mines, 2016, 39(3): 4-6 (in Chinese). [55] 庞 博,肖力光.硅藻土的火山灰活性试验研究[J].硅酸盐通报,2017,36(8):2781-2786. PANG B, XIAO L G. Experimental study on the volcanic ash activity of diatomite[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(8): 2781-2786 (in Chinese). [56] 郭 伟.煤矸石的活性激发及活性评价方法的探讨[D].南京:南京工业大学,2005. GUO W. Research on coal gangue activation and its activity evaluation method[D]. Nanjing: Nanjing University of Technology, 2005 (in Chinese). [57] 李 响,阎培渝,阿茹罕.基于Ca(OH)2含量的复合胶凝材料中水泥水化程度的评定方法[J].硅酸盐学报,2009,37(10):1597-1601. LI X, YAN P Y, ARUHAN. Assessment method of hydration degree of cement in complex binder based on the calcium hydroxide content[J]. Journal of the Chinese Ceramic Society, 2009, 37(10): 1597-1601 (in Chinese). [58] 白军营.水泥石高温热特性及对再生水泥烧成的影响[D].大连:大连理工大学,2012. BAI J Y. Thermal characteristic of hydrated cement paste and its effect on sintering process of recycled cement[D]. Dalian: Dalian University of Technology, 2012 (in Chinese). [59] 邹瑞珍,孙淑巧,陈贤拓.钙矾石热稳定碳化率关系研究[J].河北轻化工学院学报,1995,16(4):65-67. ZOU R Z, SUN S Q, CHEN X T. Study on the relation between thermal stability and carbonation rate of ettringite[J]. Journal of Hebei University of Science and Technology, 1995, 16(4): 65-67 (in Chinese). [60] 元 强,杨珍珍,史才军,等.天然火山灰在水泥基材料中的应用基础[J].硅酸盐通报,2020,39(8):2379-2392. YUAN Q, YANG Z Z, SHI C J, et al. Fundamentals on application of natural pozzolans in cement-based materials: a review[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2379-2392 (in Chinese). [61] 韩 玉,罗亚凤,丁庆军.温度对高掺量矿渣水泥水化放热性能的影响[J].武汉理工大学学报,2013,35(10):22-26. HAN Y, LUO Y F, DING Q J. Effect of temperature on sulfate resistance of cement paste with high content of blast furnace slag[J]. Journal of Wuhan University of Technology, 2013, 35(10): 22-26 (in Chinese). [62] 史 非,王立久.高掺量粉煤灰矿渣水泥水化进程及水化热的研究[J].新型建筑材料,2003,30(1):14-16. SHI F, WANG L J. Research on hydrated process and hydration heat for high added fly ash slag cement[J]. New Building Materials, 2003, 30(1): 14-16 (in Chinese). [63] 李虹燕,丁 铸,邢 锋,等.粉煤灰、矿渣对水泥水化热的影响[J].混凝土,2008(10):54-57. LI H Y, DING Z, XING F, et al. Effect of fly ash and slag on hydration heat evolution of cement[J]. Concrete, 2008(10): 54-57 (in Chinese). [64] SHI C J, DAY R L. A calorimetric study of early hydration of alkali-slag cements[J]. Cement and Concrete Research, 1995, 25(6): 1333-1346. [65] 王 冲,杨长辉,钱觉时,等.粉煤灰与矿渣的早期火山灰反应放热行为及其机理[J].硅酸盐学报,2012,40(7):1050-1058. WANG C, YANG C H, QIAN J S, et al. Behavior and mechanism of pozzolanic reaction heat of fly ash and ground granulated blastfurnace slag at early age[J]. Journal of the Chinese Ceramic Society, 2012, 40(7): 1050-1058 (in Chinese). [66] 孟凡兴,薛鲁阳,郝巧趁,等.粉煤灰及矿渣粉对水泥水化热的影响[J].水泥,2020(12):1-3. MENG F X, XUE L Y, HAO Q C, et al. Influence of fly ash and slag powder on hydration heat of cement[J]. Cement, 2020(12): 1-3 (in Chinese). [67] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.用于水泥混合材的工业废渣活性试验方法:GB/T 12957—2005[S].北京:中国标准出版社,2005. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Test method for activity of industrial waste residue used in cement mixture: GB/T 12957—2005[S]. Beijing: Standards Press of China, 2005 (in Chinese). [68] 董 刚,王培铭,冯 奇.热激活煤矸石的火山灰活性试验研究[J].新型建筑材料,2004,31(10):9-11. DONG G, WANG P M, FENG Q. Experimental study on pozzolanic activity of thermally activated coal gangue[J]. New Building Materials, 2004, 31(10): 9-11 (in Chinese). [69] 张海鸿.煤矸石的复合活化技术研究[D].西安:长安大学,2009. ZHANG H H. Research on the composite activity technique of coal gangue[D]. Xi’an: Chang’an University, 2009 (in Chinese). [70] 丁 星,蒲心诚.水泥活性矿物掺料增强效应统计模型研究[J].硅酸盐学报,1999,27(4):401-407 DING X, PU X C. Statistic model for the strengthening effect of active mineral additives in cement[J]. Journal of the Chinese Ceramic Society, 1999, 27(4): 401-407 (in Chinese) [71] 夏 春,刘浩吾.混凝土锂盐渣复合掺合料活性试验研究[J].水利水电技术,2002,33(4):40-42. XIA C, LIU H W. Experimental study on activity of concrete lithium salt slag compound admixture[J]. Water Resources and Hydropower Engineering, 2002, 33(4): 40-42 (in Chinese). [72] 蒲心诚.高强与高性能混凝土火山灰效应的数值分析[J].混凝土,1998(6):13-23. PU X C. Numerical analysis of pozzolanic effect of high strength and high performance concrete[J]. Concrete, 1998(6): 13-23 (in Chinese). [73] 周 维,曹黎颖.基于沸煮法的矿渣粉活性指数快速检测试验研究[J].建筑材料学报,2020,23(3):721-723. ZHOU W, CAO L Y. Experimental study on rapid detection of active index of slag powder based on boiling method[J]. Journal of Building Materials, 2020, 23(3): 721-723 (in Chinese). [74] 蔡基伟,王 莹,刘宝龙,等.以混凝土早期强度推定28 d强度研究[J].河南大学学报(自然科学版),2014,44(1):108-112. CAI J W, WANG Y, LIU B L, et al. Research on estimating 28 d strength of concrete by early strength[J]. Journal of Henan University (Natural Science), 2014, 44(1): 108-112 (in Chinese). [75] STRAUSS U P, SMITH E H, WINEMAN P L. Polyphosphates as polyelectrolytes. I. Light scattering and viscosity of sodium polyphosphates in electrolyte solutions[J]. Journal of the American Chemical Society, 1953, 75(16): 3935-3940. [76] TAMAS F D, SARKAR A K. ROY D M. Proceedings of the conference on hydraulic cement pastes: their structure and properties[J]. Sheffield, 1976, 55. [77] 陈筱岚,王占文,杨南如.硅酸盐玻璃中[SiO4]4-四面体聚合分布的研究 Ⅰ.三甲基硅烷化-气相色谱分析方法[J].硅酸盐学报,1987,15(1):84-89. CHEN X L, WANG Z W, YANG N R. A study on the polymeric distribution of [SiO4]4- tetrahedron in silicate glasses part I. Analytic method of trimethylsilylationgas chromatography[J]. Journal of the Chinese Ceramic Society, 1987, 15(1): 84-89 (in Chinese). [78] 张吉秀,孙恒虎,万建华,等.煅烧煤矸石胶凝活性评价方法分析[J].哈尔滨工业大学学报,2010,42(9):1438-1443. ZHANG J X, SUN H H, WAN J H, et al. Analysis of pozzolanic activity evaluation methods for calcined coal gangue[J]. Journal of Harbin Institute of Technology, 2010, 42(9): 1438-1443 (in Chinese). [79] 杨南如.充分利用资源,开发新型胶凝材料[J].建筑材料学报,1998,1(1):21-27. YANG N R. Development of new kinds of cementitious materials by use of industrial rest-products[J]. Journal of Building Materials, 1998, 1(1): 21-27 (in Chinese). [80] 袁润章.胶凝材料学[M].2版.武汉:武汉工业大学出版社,1996:179-180. YUAN R Z. Cementitious materials[M]. 2nd ed. Wuhan: Wuhan Industrial University Press, 1996: 179-180 (in Chinese). [81] 何永佳,胡曙光.29Si固体核磁共振技术在水泥化学研究中的应用[J].材料科学与工程学报,2007,25(1):147-153. HE Y J, HU S G. Application of 29Si nuclear magnetic resonance (NMR) in research of cement chemistry[J]. Journal of Materials Science and Engineering, 2007, 25(1): 147-153 (in Chinese). [82] 钱文勋,蔡跃波.活性激发过程中粉煤灰硅氧多面体结构变化的核磁共振研究[J].材料科学与工程学报,2004,22(4):561-563. QIAN W X, CAI Y B. NMR research on silicon-oxide polyhedron structure in activated fly ash[J]. Journal of Materials Science and Engineering, 2004, 22(4): 561-563 (in Chinese). [83] WANG S D, SCRIVENER K L. 29Si and 27Al NMR study of alkali-activated slag[J]. Cement and Concrete Research, 2003, 33(5): 769-774. [84] 石立安,陆生发,李启华,等.钛渣活性特征及激发活性技术研究[J].硅酸盐通报,2012,31(6):1554-1558. SHI L A, LU S F, LI Q H, et al. Research on active characteristics and stimulating activity of titanium slag[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(6): 1554-1558 (in Chinese). [85] CONG X D, KIRKPATRICK R J, YARGER J L, et al. The structure of calcium silicate hydrate: NMR and Raman spectroscopic results[M]//Nuclear Magnetic Resonance Spectroscopy of Cement-Based Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998: 143-158. [86] 宫晨琛,李东旭,王晓钧.增钙煅烧煤矸石的活性评价及其作用机理[J].硅酸盐学报,2005,33(7):842-845+852. GONG C C, LI D X, WANG X J. Evaluation of activation and its action mechanism of calcined coal gangue with calcium[J]. Journal of the Chinese Ceramic Society, 2005, 33(7): 842-845+852 (in Chinese). [87] 肖建敏,朱绘美,吴 锋.29Si固体核磁共振技术在C-S-H凝胶中的应用进展[J].硅酸盐通报,2016,35(11):3594-3599. XIAO J M, ZHU H M, WU F. Application of 29Si NMR techniques of C-S-H gel[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(11): 3594-3599 (in Chinese). [88] 孙 倩,管学茂,勾密峰,等.固体核磁共振技术在C-S-H中的研究进展[J].硅酸盐通报,2013,32(3):440-443+447. SUN Q, GUAN X M, GOU M F, et al. Study progress of C-S-H by solid-state NMR[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(3): 440-443+447 (in Chinese). [89] 冯春花,王希建,李东旭.29Si、27Al固体核磁共振在水泥基材料中的应用进展[J].核技术,2014,37(1):48-53. FENG C H, WANG X J, LI D X. Application progress of solid 29Si, 27Al NMR in the research of cement-based materials[J]. Nuclear Techniques, 2014, 37(1): 48-53 (in Chinese). [90] 兰祥辉,魏风艳,许仲梓.C-S-H凝胶的持碱机制研究[J].混凝土与水泥制品,2005(6):4-6. LAN X H, WEI F Y, XU Z Z. Study on mechanism of alkali to be bound by C-S-H[J]. China Concrete and Cement Products, 2005(6): 4-6 (in Chinese). [91] 韩方晖,王栋民,阎培渝.含不同掺量矿渣或粉煤灰的复合胶凝材料的水化动力学[J].硅酸盐学报,2014,42(5):613-620. HAN F H, WANG D M, YAN P Y. Hydration kinetics of composite binder containing different content of slag or fly ash[J]. Journal of the Chinese Ceramic Society, 2014, 42(5): 613-620 (in Chinese). [92] KRSTULOVIĆ R, DABIĆ P. A conceptual model of the cement hydration process[J]. Cement and Concrete Research, 2000, 30(5): 693-698. [93] 吴学礼,陈 孟,朱蓓蓉.粉煤灰火山灰反应动力学的研究[J].建筑材料学报,2002,5(2):120-125. WU X L, CHEN M, ZHU B R. Study on the kinetics of pozzolanic reaction of fly ashes[J]. Journal of Building Materials, 2002, 5(2): 120-125 (in Chinese). [94] 朱蓓蓉,杨全兵.粉煤灰火山灰反应性及其反应动力学[J].硅酸盐学报,2004,32(7):892-896. ZHU B R, YANG Q B. Pozzolanic reactivity and reaction kinetics of fly ash[J]. Journal of the Chinese Ceramic Society, 2004, 32(7): 892-896 (in Chinese). [95] 何小芳,缪昌文,洪锦祥,等.水泥浆体的热分析动力学[J].东南大学学报(自然科学版),2011,41(3):601-605. HE X F, MIAO C W, HONG J X, et al. Thermal analysis kinetics of cement paste[J]. Journal of Southeast University (Natural Science Edition), 2011, 41(3): 601-605 (in Chinese). [96] 宋远明,钱觉时,王 智.燃煤灰渣火山灰反应活性[J].硅酸盐学报,2006,34(8):962-965. SONG Y M, QIAN J S, WANG Z. Pozzolanic reactivity of coal ashes[J]. Journal of the Chinese Ceramic Society, 2006, 34(8): 962-965 (in Chinese). [97] JENNINGS H M, JOHNSON S K. Simulation of microstructure development during the hydration of a cement compound[J]. Journal of the American Ceramic Society, 1986, 69(11): 790-795. [98] BISHNOI S, SCRIVENER K L. μic: a new platform for modelling the hydration of cements[J]. Cement and Concrete Research, 2009, 39(4): 266-274. [99] VAN BREUGEL K. Numerical simulation of hydration and microstructural development in hardening cement-based materials (I) theory[J]. Cement and Concrete Research, 1995, 25(2): 319-331. [100] GARBOCZI E J, BENTZ D P. Computer simulation of the diffusivity of cement-based materials[J]. Journal of Materials Science, 1992, 27(8): 2083-2092. [101] MAEKAWA K, ISHIDA T, KISHI T. Multi-scale modeling of structural concrete[M]. England: Taylor and Francis Publish, 2008. [102] ISHIDA T, LUAN Y, SAGAWA T, et al. Modeling of early age behavior of blast furnace slag concrete based on micro-physical properties[J]. Cement and Concrete Research, 2011, 41(12): 1357-1367. [103] 吴学权.矿渣水泥水化动力学研究[J].硅酸盐学报,1988,16(5):423-429. WU X Q. Kinetic study on hydration of blast furnace slag cement[J]. Journal of the Chinese Ceramic Society, 1988, 16(5): 423-429 (in Chinese). |
[1] | 刘谦, 郭玉森, 仲涛, 黄清云. 高火山灰活性煅烧煤矸石添加量对水泥抗压强度的影响[J]. 硅酸盐通报, 2021, 40(3): 936-942. |
[2] | 郑木莲, 荆海洋, 陈旺, 朱琳琳, 张姝, 高源. 天然风积沙基本特性及火山灰活性研究[J]. 硅酸盐通报, 2021, 40(1): 163-171. |
[3] | 元强;杨珍珍;史才军;谭盐宾;安晓鹏. 天然火山灰在水泥基材料中的应用基础[J]. 硅酸盐通报, 2020, 39(8): 2379-2392. |
[4] | 李碧雄;汪知文;饶丹;余弦. 废玻璃在水泥混凝土中的应用研究评述[J]. 硅酸盐通报, 2020, 39(8): 2449-2457. |
[5] | 王奕仁;王栋民;赵计辉;翟梦怡. 锂渣-CaO胶凝体系的火山灰反应性研究[J]. 硅酸盐通报, 2020, 39(8): 2501-2507. |
[6] | 钟惟亮;范立峰. 天然粘土火山灰活性试验研究[J]. 硅酸盐通报, 2020, 39(7): 2196-2203. |
[7] | 肖莉娜. 机械-化学耦合活化对铜尾矿火山灰活性的影响[J]. 硅酸盐通报, 2020, 39(11): 3595-3600. |
[8] | 刘轩睿;刘开志;余百炼;国诚;肖勋光;覃宇坤;水中和. 铜矿尾砂基生态型混凝土力学性能的研究[J]. 硅酸盐通报, 2020, 39(1): 169-174. |
[9] | 俞宣良;黄达;陈宣东;刘光焰. 废弃玻璃作为辅助胶凝材料在混凝土中的应用和研究进展[J]. 硅酸盐通报, 2019, 38(5): 1413-141. |
[10] | 宁美;王智;钱觉时;唐盛轩. 固硫灰渣的特性及其与现行标准的适应性[J]. 硅酸盐通报, 2019, 38(3): 688-693. |
[11] | 余百炼;黄赟;水中和;国诚;刘潮;任鹏飞. 铜尾矿提铁尾渣用作矿物掺和料的实验研究[J]. 硅酸盐通报, 2019, 38(12): 3726-373. |
[12] | 何仕碧;陈太红;安辛友;杨辉;刘燕. 凝灰岩制备水泥混合材的试验研究[J]. 硅酸盐通报, 2018, 37(5): 1572-1577. |
[13] | 庞博;肖力光. 硅藻土的火山灰活性试验研究[J]. 硅酸盐通报, 2017, 36(8): 2781-2786. |
[14] | 毛意中;黄少文;李金臻;罗琦. 宜春锂云母提锂渣的火山灰活性研究[J]. 硅酸盐通报, 2017, 36(6): 1991-1994. |
[15] | 王云天;郭玉柱;王起才;谢松林. 低温环境下复合矿物掺合料火山灰效应试验研究[J]. 硅酸盐通报, 2017, 36(10): 3452-3458. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||